論文の概要: A multilingual training strategy for low resource Text to Speech
- arxiv url: http://arxiv.org/abs/2409.01217v1
- Date: Mon, 2 Sep 2024 12:53:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 06:47:21.056885
- Title: A multilingual training strategy for low resource Text to Speech
- Title(参考訳): 低資源テキストから音声への多言語学習戦略
- Authors: Asma Amalas, Mounir Ghogho, Mohamed Chetouani, Rachid Oulad Haj Thami,
- Abstract要約: ソーシャルメディアからのデータを、小さなTSデータセット構築に利用することができるか、また、言語間移動学習がこの種のデータに有効かどうかを検討する。
そこで本稿では,対象とする低リソース言語に対するTSモデルをトレーニングするために,外国語からのデータをどのように選択し,プールするかを検討する。
以上の結果から,多言語事前学習は単言語事前学習よりも,生成した音声の明瞭さと自然性を高めることが示唆された。
- 参考スコア(独自算出の注目度): 5.109810774427171
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent speech technologies have led to produce high quality synthesised speech due to recent advances in neural Text to Speech (TTS). However, such TTS models depend on extensive amounts of data that can be costly to produce and is hardly scalable to all existing languages, especially that seldom attention is given to low resource languages. With techniques such as knowledge transfer, the burden of creating datasets can be alleviated. In this paper, we therefore investigate two aspects; firstly, whether data from social media can be used for a small TTS dataset construction, and secondly whether cross lingual transfer learning (TL) for a low resource language can work with this type of data. In this aspect, we specifically assess to what extent multilingual modeling can be leveraged as an alternative to training on monolingual corporas. To do so, we explore how data from foreign languages may be selected and pooled to train a TTS model for a target low resource language. Our findings show that multilingual pre-training is better than monolingual pre-training at increasing the intelligibility and naturalness of the generated speech.
- Abstract(参考訳): 近年, 音声合成技術は, ニューラルテキスト・トゥ・スピーチ(TTS)の進歩により, 高品質な音声合成を実現している。
しかし、これらのTSモデルは、生産にコストがかかり、既存のすべての言語にはスケーラビリティが低い膨大なデータに依存しており、特に低リソース言語にはほとんど注目されない。
知識伝達のような技術により、データセット作成の負担を軽減することができる。
そこで本稿では,ソーシャルメディアからのデータを小さなTSデータセット構築に使用することができるか,低リソース言語における言語間変換学習(TL)が,このタイプのデータを扱うことができるか,という2つの側面について検討する。
本稿では,単言語コーパスの学習の代替として,多言語モデリングがどの程度活用できるかを具体的に評価する。
そこで本稿では,対象とする低リソース言語に対するTSモデルをトレーニングするために,外国語からのデータをどのように選択し,プールするかを検討する。
以上の結果から,多言語事前学習は単言語事前学習よりも,生成した音声の明瞭さと自然性を高めることが示唆された。
関連論文リスト
- Improving Speech Emotion Recognition in Under-Resourced Languages via Speech-to-Speech Translation with Bootstrapping Data Selection [49.27067541740956]
音声感情認識(SER)は、人間とコンピュータの自然な相互作用が可能な汎用AIエージェントを開発する上で重要な要素である。
英語や中国語以外の言語でラベル付きデータが不足しているため、堅牢な多言語SERシステムの構築は依然として困難である。
本稿では,低SERリソース言語におけるSERの性能向上のための手法を提案する。
論文 参考訳(メタデータ) (2024-09-17T08:36:45Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Cross-Lingual Transfer Learning for Phrase Break Prediction with
Multilingual Language Model [13.730152819942445]
言語間変換学習は低リソース言語の性能向上に特に有効である。
このことは、リソース不足言語におけるTSフロントエンドの開発には、言語間転送が安価で効果的であることを示している。
論文 参考訳(メタデータ) (2023-06-05T04:10:04Z) - Learning to Speak from Text: Zero-Shot Multilingual Text-to-Speech with
Unsupervised Text Pretraining [65.30528567491984]
本稿では,対象言語に対するテキストのみのデータを用いたゼロショット多言語TS法を提案する。
テキストのみのデータを使用することで、低リソース言語向けのTSシステムの開発が可能になる。
評価の結果,文字誤り率が12%未満のゼロショットTSは,見当たらない言語では高い知能性を示した。
論文 参考訳(メタデータ) (2023-01-30T00:53:50Z) - Improving Cross-lingual Information Retrieval on Low-Resource Languages
via Optimal Transport Distillation [21.057178077747754]
本稿では,低リソースな言語間情報検索のためのOPTICAL: Optimal Transport 蒸留法を提案する。
クエリドキュメントマッチングの知識から言語間知識を分離することにより、OPTICALは蒸留訓練のためのbitextデータのみを必要とする。
実験結果から,OPTICALは最小限のトレーニングデータにより,低リソース言語上での強いベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-01-29T22:30:36Z) - Adapting Multilingual Speech Representation Model for a New,
Underresourced Language through Multilingual Fine-tuning and Continued
Pretraining [2.3513645401551333]
既存の多言語wav2vec 2.0モデルを新しい言語に適用する可能性を検討する。
この結果から, 継続事前学習がwav2vec 2.0モデルを新しい言語に適応させる最も効果的な方法であることが示唆された。
関連言語の種類や類似した音韻特性を持つ非関連言語で事前訓練されたモデルが利用可能である場合,その言語からの付加データを用いた多言語微調整は,音声認識性能に肯定的な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-01-18T03:57:53Z) - Low-Resource Multilingual and Zero-Shot Multispeaker TTS [25.707717591185386]
5分間のトレーニングデータを用いて,新しい言語を学習することが可能であることを示す。
提案手法を,対象話者との親密性,自然性,類似性の観点から示す。
論文 参考訳(メタデータ) (2022-10-21T20:03:37Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
言語間機械読解(CLMRC)は、ローソース言語に大規模なデータセットがないため、依然として難しい問題である。
本稿では,Language Branch Machine Reading (LBMRC) という新しい拡張手法を提案する。
LBMRCは、個々の言語に精通したMultiple Machine Read comprehension (MRC)モデルを訓練する。
複数の言語分岐モデルから全ての対象言語に対する単一モデルへのアマルガメート知識の多言語蒸留アプローチを考案する。
論文 参考訳(メタデータ) (2020-10-27T13:12:17Z) - Efficient neural speech synthesis for low-resource languages through
multilingual modeling [3.996275177789896]
マルチスピーカーモデリングは、新しい音声に必要なデータ要求を減らすことができる。
多言語モデルは、単言語多話者モデルに匹敵する自然度で音声を生成することができることを示す。
論文 参考訳(メタデータ) (2020-08-20T14:05:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。