論文の概要: On the Implicit Bias in Deep-Learning Algorithms
- arxiv url: http://arxiv.org/abs/2208.12591v1
- Date: Fri, 26 Aug 2022 11:39:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-29 12:36:55.701618
- Title: On the Implicit Bias in Deep-Learning Algorithms
- Title(参考訳): ディープラーニングアルゴリズムにおける暗示バイアスについて
- Authors: Gal Vardi
- Abstract要約: 暗黙の偏見は一般化する能力の重要な要素であり、近年広く研究されていると考えられている。
この短い調査では、暗黙のバイアスの概念を説明し、主要な結果をレビューし、その影響について論じる。
- 参考スコア(独自算出の注目度): 8.947188600472256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gradient-based deep-learning algorithms exhibit remarkable performance in
practice, but it is not well-understood why they are able to generalize despite
having more parameters than training examples. It is believed that implicit
bias is a key factor in their ability to generalize, and hence it has been
widely studied in recent years. In this short survey, we explain the notion of
implicit bias, review main results and discuss their implications.
- Abstract(参考訳): 勾配に基づくディープラーニングアルゴリズムは、実際に顕著なパフォーマンスを示すが、なぜトレーニング例よりも多くのパラメータを持つにもかかわらず、一般化できるのかはよく理解されていない。
暗黙の偏見は一般化する能力の重要な要素であり、近年広く研究されていると考えられている。
この短い調査で、暗黙のバイアスの概念を説明し、主な結果をレビューし、その意味について論じる。
関連論文リスト
- On the Role of Initialization on the Implicit Bias in Deep Linear
Networks [8.272491066698041]
本研究は,遊びにおける暗黙の偏見に起因する現象を探索することに焦点を当てた。
ステップサイズ、重み初期化、最適化アルゴリズム、パラメータ数など、暗黙バイアスの様々な情報源が特定されている。
論文 参考訳(メタデータ) (2024-02-04T11:54:07Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
大規模言語モデル(LLM)は人気を集め、大規模なユーザコミュニティで広く採用されている。
既存の評価手法には多くの制約があり、それらの結果は限定的な解釈可能性を示している。
本稿では,LPMの高性能性を活用し,モデル内のバイアスを評価するGPTBIASというバイアス評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-11T12:02:14Z) - Theoretical Guarantees of Learning Ensembling Strategies with
Applications to Time Series Forecasting [14.037314994161378]
クロスバリデード性能に基づく(有限あるいは有限次元の)積み重ね一般化の族から最高の積み重ね一般化を選択すると、オラクルの最高値よりも「はるかに悪い」結果が得られないことを示す。
理論的解析から着想を得て,確率的予測の文脈において,階層化された一般化の特定のファミリーを提案する。
論文 参考訳(メタデータ) (2023-05-25T07:01:02Z) - Generalization Analysis for Contrastive Representation Learning [80.89690821916653]
既存の一般化誤差境界は負の例の数$k$に線形に依存する。
対数項まで$k$に依存しないコントラスト学習のための新しい一般化境界を確立する。
論文 参考訳(メタデータ) (2023-02-24T01:03:56Z) - Looking at the Overlooked: An Analysis on the Word-Overlap Bias in
Natural Language Inference [20.112129592923246]
我々は、NLIモデルにおける重複バイアスの見過ごされた側面、すなわちリバースワードオーバーラップバイアスに焦点を当てる。
現在のNLIモデルは、重複の少ないインスタンスにおいて、非エンターメントラベルに対して非常に偏りがある。
重なり合うバイアスの出現とその緩和におけるマイノリティ事例の役割について検討する。
論文 参考訳(メタデータ) (2022-11-07T21:02:23Z) - Unsupervised Learning of Unbiased Visual Representations [10.871587311621974]
ディープニューラルネットワークは、データセットにバイアスが存在するときに堅牢な表現を学習できないことで知られている。
我々は3つのステップからなる完全に教師なしの脱バイアスフレームワークを提案する。
我々は、非バイアスモデルを得るために最先端の教師付き脱バイアス技術を採用している。
論文 参考訳(メタデータ) (2022-04-26T10:51:50Z) - The SAME score: Improved cosine based bias score for word embeddings [49.75878234192369]
埋め込みにおけるセマンティックバイアスのための新しいバイアススコアであるPetを紹介した。
本研究は,下水道作業における意味バイアスを測定し,社会的バイアスの潜在的な原因を特定することができることを示す。
論文 参考訳(メタデータ) (2022-03-28T09:28:13Z) - Relieving Long-tailed Instance Segmentation via Pairwise Class Balance [85.53585498649252]
長い尾のインスタンスセグメンテーションは、クラス間のトレーニングサンプルの極端な不均衡のために難しいタスクである。
尾のついたものに対して、(大多数のサンプルを含む)ヘッドクラスの深刻なバイアスを引き起こす。
そこで本研究では,学習中の予測嗜好を蓄積するために,学習中に更新される混乱行列上に構築された新しいPairwise Class Balance(PCB)手法を提案する。
論文 参考訳(メタデータ) (2022-01-08T07:48:36Z) - In Search of Robust Measures of Generalization [79.75709926309703]
我々は、一般化誤差、最適化誤差、過大なリスクのバウンダリを開発する。
経験的に評価すると、これらの境界の大部分は数値的に空白である。
我々は、分散ロバストネスの枠組みの中で、一般化対策を評価するべきであると論じる。
論文 参考訳(メタデータ) (2020-10-22T17:54:25Z) - Underestimation Bias and Underfitting in Machine Learning [2.639737913330821]
機械学習におけるアルゴリズムバイアスと呼ばれるものは、トレーニングデータの歴史的なバイアスによるものである。
時には、アルゴリズム自体によってバイアスがもたらされる(あるいは少なくとも悪化する)ことがある。
本稿では,分類アルゴリズムのバイアスに寄与する要因を理解するための初期研究について報告する。
論文 参考訳(メタデータ) (2020-05-18T20:01:56Z) - Mitigating Gender Bias Amplification in Distribution by Posterior
Regularization [75.3529537096899]
本稿では,男女差の増幅問題について,分布の観点から検討する。
後続正則化に基づくバイアス緩和手法を提案する。
私たちの研究はバイアス増幅の理解に光を当てている。
論文 参考訳(メタデータ) (2020-05-13T11:07:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。