Deep Kernel Learning of Dynamical Models from High-Dimensional Noisy
Data
- URL: http://arxiv.org/abs/2208.12975v1
- Date: Sat, 27 Aug 2022 09:47:44 GMT
- Title: Deep Kernel Learning of Dynamical Models from High-Dimensional Noisy
Data
- Authors: Nicol\`o Botteghi, Mengwu Guo, Christoph Brune
- Abstract summary: The framework is composed of an encoder that compresses high-dimensional measurements into low-dimensional state variables.
The training of the proposed model is carried out in an unsupervised manner, not relying on labeled data.
Results show that the method can effectively denoise measurements, learn compact state representations and latent dynamical models.
- Score: 1.3750624267664155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work proposes a Stochastic Variational Deep Kernel Learning method for
the data-driven discovery of low-dimensional dynamical models from
high-dimensional noisy data. The framework is composed of an encoder that
compresses high-dimensional measurements into low-dimensional state variables,
and a latent dynamical model for the state variables that predicts the system
evolution over time. The training of the proposed model is carried out in an
unsupervised manner, i.e., not relying on labeled data. Our learning method is
evaluated on the motion of a pendulum -- a well studied baseline for nonlinear
model identification and control with continuous states and control inputs --
measured via high-dimensional noisy RGB images. Results show that the method
can effectively denoise measurements, learn compact state representations and
latent dynamical models, as well as identify and quantify modeling
uncertainties.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Towards Efficient Modelling of String Dynamics: A Comparison of State Space and Koopman based Deep Learning Methods [8.654571696634825]
State Space Models (SSM) and Koopman-based deep learning methods for modelling the dynamics of both linear and non-linear stiff strings.
Our findings indicate that our proposed Koopman-based model performs as well as or better than other existing approaches in non-linear cases for long-sequence modelling.
This research contributes insights into the physical modelling of dynamical systems by offering a comparative overview of these and previous methods and introducing innovative strategies for model improvement.
arXiv Detail & Related papers (2024-08-29T15:55:27Z) - Recurrent Deep Kernel Learning of Dynamical Systems [0.5825410941577593]
Digital twins require computationally-efficient reduced-order models (ROMs) that can accurately describe complex dynamics of physical assets.
We propose a data-driven, non-intrusive deep kernel learning (SVDKL) method to discover low-dimensional latent spaces from data.
Results show that our framework is capable of (i) denoising and reconstructing measurements, (ii) learning compact representations of system states, (iii) predicting system evolution in low-dimensional latent spaces, and (iv) modeling uncertainties.
arXiv Detail & Related papers (2024-05-30T07:49:02Z) - eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
We introduce a low-rank structured variational autoencoder framework for nonlinear state-space graphical models.
We show that our approach consistently demonstrates the ability to learn a more predictive generative model.
arXiv Detail & Related papers (2024-03-03T02:19:49Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
We propose generic model structures combining delay-coordinate encoding of measurements and full-state decoding to integrate reduced Koopman modeling and state estimation.
A case study demonstrates that our approach provides accurate control models and enables real-time capable nonlinear model predictive control of a high-purity cryogenic distillation column.
arXiv Detail & Related papers (2024-01-09T11:54:54Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Learning Low-Dimensional Quadratic-Embeddings of High-Fidelity Nonlinear
Dynamics using Deep Learning [9.36739413306697]
Learning dynamical models from data plays a vital role in engineering design, optimization, and predictions.
We use deep learning to identify low-dimensional embeddings for high-fidelity dynamical systems.
arXiv Detail & Related papers (2021-11-25T10:09:00Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Controlled Gaussian Process Dynamical Models with Application to Robotic
Cloth Manipulation [10.04778213256535]
We propose Controlled Gaussian Process Dynamical Model (CGPDM) for learning high-dimensional, nonlinear dynamics.
CGPDM is constituted by a low-dimensional latent space, with an associated dynamics where external control variables can act.
It is capable of generalizing over a wide range of movements and confidently predicting the cloth motions obtained by previously unseen sequences of control actions.
arXiv Detail & Related papers (2021-03-11T11:34:12Z) - Learning Unstable Dynamics with One Minute of Data: A
Differentiation-based Gaussian Process Approach [47.045588297201434]
We show how to exploit the differentiability of Gaussian processes to create a state-dependent linearized approximation of the true continuous dynamics.
We validate our approach by iteratively learning the system dynamics of an unstable system such as a 9-D segway.
arXiv Detail & Related papers (2021-03-08T05:08:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.