eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling
- URL: http://arxiv.org/abs/2403.01371v4
- Date: Sun, 03 Nov 2024 14:42:12 GMT
- Title: eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling
- Authors: Matthew Dowling, Yuan Zhao, Il Memming Park,
- Abstract summary: We introduce a low-rank structured variational autoencoder framework for nonlinear state-space graphical models.
We show that our approach consistently demonstrates the ability to learn a more predictive generative model.
- Score: 9.52474299688276
- License:
- Abstract: State-space graphical models and the variational autoencoder framework provide a principled apparatus for learning dynamical systems from data. State-of-the-art probabilistic approaches are often able to scale to large problems at the cost of flexibility of the variational posterior or expressivity of the dynamics model. However, those consolidations can be detrimental if the ultimate goal is to learn a generative model capable of explaining the spatiotemporal structure of the data and making accurate forecasts. We introduce a low-rank structured variational autoencoding framework for nonlinear Gaussian state-space graphical models capable of capturing dense covariance structures that are important for learning dynamical systems with predictive capabilities. Our inference algorithm exploits the covariance structures that arise naturally from sample based approximate Gaussian message passing and low-rank amortized posterior updates -- effectively performing approximate variational smoothing with time complexity scaling linearly in the state dimensionality. In comparisons with other deep state-space model architectures our approach consistently demonstrates the ability to learn a more predictive generative model. Furthermore, when applied to neural physiological recordings, our approach is able to learn a dynamical system capable of forecasting population spiking and behavioral correlates from a small portion of single trials.
Related papers
- Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics [5.841659874892801]
Time-varying linear state-space models are powerful tools for obtaining mathematically interpretable representations of neural signals.
Existing methods for latent variable estimation are not robust to dynamical noise and system nonlinearity.
We propose a probabilistic approach to latent variable estimation in decomposed models that improves robustness against dynamical noise.
arXiv Detail & Related papers (2024-08-29T18:58:39Z) - CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation [1.4322470793889193]
A new knowledge-based and machine learning hybrid modeling approach, called conditional neural differential equation (CGNSDE), is developed.
In contrast to the standard neural network predictive models, the CGNSDE is designed to effectively tackle both forward prediction tasks and inverse state estimation problems.
arXiv Detail & Related papers (2024-04-10T05:32:03Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems.
A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations.
We show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible.
arXiv Detail & Related papers (2023-01-12T09:44:59Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Bridging the Gap: Machine Learning to Resolve Improperly Modeled
Dynamics [4.940323406667406]
We present a data-driven modeling strategy to overcome improperly modeled dynamics for systems exhibiting complex-temporal behaviors.
We propose a Deep Learning framework to resolve the differences between the true dynamics of the system and the dynamics given by a model of the system that is either inaccurately or inadequately described.
arXiv Detail & Related papers (2020-08-23T04:57:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.