論文の概要: A Multi-Format Transfer Learning Model for Event Argument Extraction via
Variational Information Bottleneck
- arxiv url: http://arxiv.org/abs/2208.13017v1
- Date: Sat, 27 Aug 2022 13:52:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-30 13:40:37.303192
- Title: A Multi-Format Transfer Learning Model for Event Argument Extraction via
Variational Information Bottleneck
- Title(参考訳): 変動情報を用いたイベント引数抽出のための多形式変換学習モデル
- Authors: Jie Zhou and Qi Zhang and Qin Chen and Liang He and Xuanjing Huang
- Abstract要約: イベント引数抽出(EAE)は、テキストから所定の役割を持つ引数を抽出することを目的としている。
変動情報のボトルネックを考慮したマルチフォーマット変換学習モデルを提案する。
3つのベンチマークデータセットに対して広範な実験を行い、EAE上での新たな最先端性能を得る。
- 参考スコア(独自算出の注目度): 68.61583160269664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event argument extraction (EAE) aims to extract arguments with given roles
from texts, which have been widely studied in natural language processing. Most
previous works have achieved good performance in specific EAE datasets with
dedicated neural architectures. Whereas, these architectures are usually
difficult to adapt to new datasets/scenarios with various annotation schemas or
formats. Furthermore, they rely on large-scale labeled data for training, which
is unavailable due to the high labelling cost in most cases. In this paper, we
propose a multi-format transfer learning model with variational information
bottleneck, which makes use of the information especially the common knowledge
in existing datasets for EAE in new datasets. Specifically, we introduce a
shared-specific prompt framework to learn both format-shared and
format-specific knowledge from datasets with different formats. In order to
further absorb the common knowledge for EAE and eliminate the irrelevant noise,
we integrate variational information bottleneck into our architecture to refine
the shared representation. We conduct extensive experiments on three benchmark
datasets, and obtain new state-of-the-art performance on EAE.
- Abstract(参考訳): イベント引数抽出(EAE)は、自然言語処理で広く研究されているテキストから与えられた役割を持つ引数を抽出することを目的としている。
これまでのほとんどの研究は、専用のニューラルネットワークを備えた特定のEAEデータセットで優れたパフォーマンスを実現している。
しかしながら、これらのアーキテクチャは、さまざまなアノテーションスキーマやフォーマットを持つ新しいデータセットやシナリオに適応することが通常難しい。
さらに、トレーニングには大規模なラベル付きデータに依存するが、多くの場合、ラベル付きコストが高いため使用できない。
本稿では,新しいデータセットにおける既存のEAEデータセットにおける情報,特に共通知識を利用した多変量情報ボトルネックを有するマルチフォーマットトランスファー学習モデルを提案する。
具体的には、異なるフォーマットのデータセットから、フォーマット共有とフォーマット固有の知識の両方を学ぶための、共有固有のプロンプトフレームワークを紹介します。
EAEの共通知識をさらに吸収し、無関係なノイズを除去するために、我々は、変動情報ボトルネックをアーキテクチャに統合し、共有表現を洗練します。
3つのベンチマークデータセットに対して広範な実験を行い、EAE上での新たな最先端性能を得る。
関連論文リスト
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - Semantic-Aware Representation of Multi-Modal Data for Data Ingress: A Literature Review [1.8590097948961688]
LLM(Large Language Models)のような生成AIは、テキスト、画像、オーディオ、ビデオなどのマルチモーダルデータを処理するために広く採用されている。
このデータを効率的に管理することは、データ量が2倍にならないため、業界倍の課題となっている。
本研究では,モノモーダル,マルチモーダル,クロスモーダルデータから埋め込みを抽出するセマンティック・アウェア技術に着目した。
論文 参考訳(メタデータ) (2024-07-17T09:49:11Z) - EIGEN: Expert-Informed Joint Learning Aggregation for High-Fidelity
Information Extraction from Document Images [27.36816896426097]
レイアウトフォーマットの多様性が高いため,文書画像からの情報抽出は困難である。
本稿では,ルールベースの手法とデータプログラミングを用いたディープラーニングモデルを組み合わせた新しい手法であるEIGENを提案する。
我々のEIGENフレームワークは、ラベル付きデータインスタンスがほとんどない状態で、最先端のディープモデルの性能を大幅に向上させることができることを実証的に示しています。
論文 参考訳(メタデータ) (2023-11-23T13:20:42Z) - Aggregating Intrinsic Information to Enhance BCI Performance through
Federated Learning [29.65566062475597]
不十分なデータは、高性能なディープラーニングモデルを構築するためのBCI(Brain-Computer Interface)にとって長年の課題である。
本稿では,この課題を克服するために,階層的に個別化したフェデレート学習脳波デコーディングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:59:44Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerseは、データセットの特徴付けのための普遍的なフレームワークである。
infoVerseは、様々なモデル駆動メタ情報を統合することで、データセットの多次元特性をキャプチャする。
実世界の3つのアプリケーション(データプルーニング、アクティブラーニング、データアノテーション)において、infoVerse空間で選択されたサンプルは、強いベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2023-05-30T18:12:48Z) - Modeling Entities as Semantic Points for Visual Information Extraction
in the Wild [55.91783742370978]
文書画像から鍵情報を正確かつ堅牢に抽出する手法を提案する。
我々は、エンティティを意味的ポイントとして明示的にモデル化する。つまり、エンティティの中心点は、異なるエンティティの属性と関係を記述する意味情報によって豊かになる。
提案手法は,従来の最先端モデルと比較して,エンティティラベルとリンクの性能を著しく向上させることができる。
論文 参考訳(メタデータ) (2023-03-23T08:21:16Z) - Deep Transfer Learning for Multi-source Entity Linkage via Domain
Adaptation [63.24594955429465]
マルチソースエンティティリンクは、データのクリーニングやユーザ縫合といった、高インパクトなアプリケーションにおいて重要である。
AdaMELは、多ソースエンティティリンクを実行するための一般的なハイレベルな知識を学ぶディープトランスファー学習フレームワークである。
本フレームワークは,教師付き学習に基づく平均的手法よりも8.21%向上した最先端の学習結果を実現する。
論文 参考訳(メタデータ) (2021-10-27T15:20:41Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
実際には、出力記述が最も重要な知識のみをカバーするため、入力知識は十分以上である可能性がある。
我々は、KG-to-textにおけるこのような実践的なシナリオの研究を容易にするために、大規模で挑戦的なデータセットを導入する。
本稿では,元のグラフ情報をより包括的に表現できるマルチグラフ構造を提案する。
論文 参考訳(メタデータ) (2020-04-30T14:16:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。