論文の概要: Modeling Spatial Trajectories using Coarse-Grained Smartphone Logs
- arxiv url: http://arxiv.org/abs/2208.13775v1
- Date: Mon, 29 Aug 2022 02:56:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-31 13:13:51.653189
- Title: Modeling Spatial Trajectories using Coarse-Grained Smartphone Logs
- Title(参考訳): 粗粒スマートフォンログを用いた空間軌道のモデル化
- Authors: Vinayak Gupta and Srikanta Bedathur
- Abstract要約: REVAMPは、スマートフォンアプリケーションのユーザアクティビティを利用して、モビリティの好みを特定する、シーケンシャルなPOIレコメンデーションアプローチである。
REVAMPは正確なジオコーディネート、ソーシャルネットワーク、あるいはアクセスされている特定のアプリケーションに対してプライベートではない。
- 参考スコア(独自算出の注目度): 9.571588145356277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current approaches for points-of-interest (POI) recommendation learn the
preferences of a user via the standard spatial features such as the POI
coordinates, the social network, etc. These models ignore a crucial aspect of
spatial mobility -- every user carries their smartphones wherever they go. In
addition, with growing privacy concerns, users refrain from sharing their exact
geographical coordinates and their social media activity. In this paper, we
present REVAMP, a sequential POI recommendation approach that utilizes the user
activity on smartphone applications (or apps) to identify their mobility
preferences. This work aligns with the recent psychological studies of online
urban users, which show that their spatial mobility behavior is largely
influenced by the activity of their smartphone apps. In addition, our proposal
of coarse-grained smartphone data refers to data logs collected in a
privacy-conscious manner, i.e., consisting only of (a) category of the
smartphone app and (b) category of check-in location. Thus, REVAMP is not privy
to precise geo-coordinates, social networks, or the specific application being
accessed. Buoyed by the efficacy of self-attention models, we learn the POI
preferences of a user using two forms of positional encodings -- absolute and
relative -- with each extracted from the inter-check-in dynamics in the
check-in sequence of a user. Extensive experiments across two large-scale
datasets from China show the predictive prowess of REVAMP and its ability to
predict app- and POI categories.
- Abstract(参考訳): ポイント・オブ・関心(POI)レコメンデーションの現在のアプローチは、POI座標やソーシャルネットワークなどの標準的な空間的特徴を通じて、ユーザの好みを学習する。
これらのモデルは、空間移動性の重要な側面を無視している。
さらに、プライバシーの懸念が高まる中、ユーザーは正確な地理的座標とソーシャルメディアの活動を共有することを控える。
本稿では,スマートフォンアプリケーション(あるいはアプリ)上でのユーザ活動を利用してモビリティの選好を識別する,逐次POIレコメンデーションアプローチであるREVAMPを提案する。
この研究は、最近のオンライン都市ユーザーの心理的研究と一致し、その空間移動行動がスマートフォンアプリの活動に大きく影響していることを示している。
さらに、大まかな粒度のスマートフォンデータの提案は、プライバシーに配慮した方法で収集されたデータログ、すなわち、データのみからなる。
(a)スマートフォンアプリのカテゴリ及び
(b)チェックイン位置のカテゴリ。
したがって、REVAMPは正確なジオコーディネート、ソーシャルネットワーク、あるいはアクセスされている特定のアプリケーションに対してプライベートではない。
自己注意モデルの有効性に乗じて、ユーザのチェックインシーケンス内のチェックイン間ダイナミクスから抽出した2種類の位置エンコーディング(絶対および相対)を用いて、ユーザのPOI嗜好を学習する。
中国からの2つの大規模なデータセットにわたる大規模な実験は、REVAMPの予測能力と、アプリとPOIカテゴリを予測する能力を示している。
関連論文リスト
- Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
本稿では, 位置決めの精度を高めるために, 視点選択の重要性を強調し, アクティブな位置決め領域について検討する。
私たちのコントリビューションは、リアルタイム操作用に設計されたシンプルなアーキテクチャ、自己教師付きデータトレーニング方法、および実世界のロボティクスアプリケーションに適した計画フレームワークにマップを一貫して統合する能力による、データ駆動型アプローチの使用に関するものです。
論文 参考訳(メタデータ) (2024-07-22T12:32:09Z) - Bayes-enhanced Multi-view Attention Networks for Robust POI
Recommendation [81.4999547454189]
既存の作業では、ユーザによって報告された利用可能なPOIチェックインが、ユーザ行動の真真正な描写であると仮定している。
実際のアプリケーションシナリオでは、主観的および客観的な原因の両方のため、チェックインデータは信頼性が低い。
本稿では,ユーザチェックインの不確実性に対処するため,ベイズ強化型マルチビュー注意ネットワークを提案する。
論文 参考訳(メタデータ) (2023-11-01T12:47:38Z) - On-device modeling of user's social context and familiar places from
smartphone-embedded sensor data [7.310043452300736]
本稿では,ユーザの社会的状況や位置を直接モバイルデバイス上でモデル化する,教師なしで軽量なアプローチを提案する。
ソーシャルなコンテキストにおいて、このアプローチはユーザーとそのデバイス間の物理的およびサイバーなソーシャルインタラクションのデータを利用する。
提案手法の有効性は,実世界の5つのデータセットを用いた3つの実験によって実証された。
論文 参考訳(メタデータ) (2023-06-27T12:53:14Z) - Federated Privacy-preserving Collaborative Filtering for On-Device Next
App Prediction [52.16923290335873]
本稿では,モバイルデバイス使用時の次のアプリの起動を予測するための新しいSeqMFモデルを提案する。
古典行列分解モデルの構造を修正し、学習手順を逐次学習に更新する。
提案手法のもうひとつの要素は,ユーザからリモートサーバへの送信データの保護を保証する,新たなプライバシメカニズムである。
論文 参考訳(メタデータ) (2023-02-05T10:29:57Z) - On Inferring User Socioeconomic Status with Mobility Records [61.0966646857356]
本稿では,DeepSEIと呼ばれる,社会経済に配慮したディープモデルを提案する。
DeepSEIモデルはディープネットワークとリカレントネットワークと呼ばれる2つのネットワークを組み込んでいる。
実際の移動記録データ、POIデータ、住宅価格データについて広範な実験を行う。
論文 参考訳(メタデータ) (2022-11-15T15:07:45Z) - Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI)レコメンデーションは、ロケーションベースのeコマースにおいて重要なコンポーネントとなっている。
自己教師付きグラフ強化POIレコメンデーション(S2GRec)を次のPOIレコメンデーションのために提案する。
特に,グローバル・トランジション・グラフと局所軌道グラフの両方からの協調的な信号を組み込むために,グラフ強化セルフアテンテート・レイヤを考案した。
論文 参考訳(メタデータ) (2022-10-22T17:29:34Z) - On-device modeling of user's social context and familiar places from
smartphone-embedded sensor data [7.310043452300736]
ユーザの社会的文脈とその位置をモデル化するための,新しい,教師なし,軽量なアプローチを提案する。
ユーザとそのデバイス間の物理的およびサイバー的ソーシャルインタラクションに関連するデータを活用する。
日常の状況を認識するための3つの機械学習アルゴリズムの性能を示す。
論文 参考訳(メタデータ) (2022-05-18T08:32:26Z) - Learning Self-Modulating Attention in Continuous Time Space with
Applications to Sequential Recommendation [102.24108167002252]
本稿では,複雑で非線形に進化する動的ユーザの嗜好をモデル化する,自己変調型注意ネットワークを提案する。
提案手法がトップNシーケンシャルなレコメンデーションタスクに与える影響を実証的に示すとともに,3つの大規模実世界のデータセットによる結果から,我々のモデルが最先端のパフォーマンスを達成できることを示す。
論文 参考訳(メタデータ) (2022-03-30T03:54:11Z) - Leveraging Social Influence based on Users Activity Centers for
Point-of-Interest Recommendation [2.896192909215469]
明示的な友情ネットワークとユーザ間の高いチェックインオーバラップに基づく2段階の友情を導入する。
その結果,提案手法は2つの実世界のデータセットにおいて最先端のモデルよりも優れていた。
論文 参考訳(メタデータ) (2022-01-10T16:46:27Z) - Modelling of Bi-directional Spatio-Temporal Dependence and Users'
Dynamic Preferences for Missing POI Check-in Identification [38.51964956686177]
双方向の時間的依存とユーザの動的嗜好を統合するモデルであるBi-STDDPを開発した。
その結果, 最先端手法と比較して, モデルの大幅な改善が示された。
論文 参考訳(メタデータ) (2021-12-31T03:54:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。