論文の概要: Functional Renormalization Group Approach to Circuit Quantum
Electrodynamics
- arxiv url: http://arxiv.org/abs/2208.14107v1
- Date: Tue, 30 Aug 2022 09:43:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-28 12:00:57.303665
- Title: Functional Renormalization Group Approach to Circuit Quantum
Electrodynamics
- Title(参考訳): 回路量子電磁力学における機能的再正規化群アプローチ
- Authors: Takeru Yokota, Kanta Masuki, Yuto Ashida
- Abstract要約: 量子化電磁連続体に結合した超伝導回路を解析するための非摂動的手法を開発した。
以上の結果から,cQEDプラットフォームを包括的に理解するには,非摂動解析が不可欠であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A nonperturbative approach is developed to analyze superconducting circuits
coupled to quantized electromagnetic continuum within the framework of the
functional renormalization group. The formalism allows us to determine complete
physical pictures of equilibrium properties in the circuit quantum
electrodynamics (cQED) architectures with high-impedance waveguides, which have
recently become accessible in experiments. We point out that nonperturbative
effects can trigger breakdown of the supposedly effective descriptions, such as
the spin-boson and boundary sine-Gordon models, and lead to qualitatively new
phase diagrams. The origin of the failure of conventional understandings is
traced to strong renormalizations of circuit parameters at low-energy scales.
Our results indicate that a nonperturbative analysis is essential for a
comprehensive understanding of cQED platforms consisting of superconducting
circuits and long high-impedance transmission lines.
- Abstract(参考訳): 量子化された電磁連続体に結合した超伝導回路を機能的再正規化群の枠組みで解析する非摂動的手法を開発した。
この定式化により、最近実験で利用できるようになった高インピーダンス導波路を持つ回路量子力学(cQED)アーキテクチャにおける平衡特性の完全な物理像を決定できる。
我々は、非摂動効果はスピンボーソンや境界シン・ゴルドンモデルのような有効な記述を分解し、定性的に新しい位相図へと導く可能性があることを指摘した。
従来の理解の失敗の起源は、低エネルギースケールでの回路パラメータの強い再正規化にさかのぼる。
その結果,超伝導回路と長距離高インピーダンス伝送路からなるcQEDプラットフォームを包括的に理解するには,非摂動解析が不可欠であることが示唆された。
関連論文リスト
- Improving the accuracy of circuit quantization using the electromagnetic properties of superconductors [2.8635469418155406]
超伝導回路の量子化のための改良手法を提案する。
我々は,35nmの薄膜を有するニオブ薄膜からなる平面超伝導量子デバイスを用いて,本手法を実験的に検証した。
本手法は, 歪んだ薄膜, コンパクトで微細な素子をベースとした超伝導素子の系統的研究を可能にする。
論文 参考訳(メタデータ) (2024-10-31T15:06:12Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
理論的には、1次元導波路に対して動く2レベル量子ビットの配列について検討する。
この運動の周波数が2倍のクビット共鳴周波数に近づくと、光子のパラメトリック生成と量子ビットの励起を誘導する。
我々は、摂動図式技術と厳密なマスター方程式アプローチの両方を取り入れた包括的一般理論フレームワークを開発する。
論文 参考訳(メタデータ) (2024-08-30T15:54:33Z) - Josephson bifurcation readout: beyond the monochromatic approximation [49.1574468325115]
弱非線形超伝導共振回路に基づく分岐量子検出器の特性を解析する。
この回路は超伝導量子ビットの量子状態の効率的な検出器として機能する。
論文 参考訳(メタデータ) (2024-05-25T22:22:37Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
本研究では, 量子メムリスタを含む人工ニューロン回路について, 緩和と脱落の存在下で検討した。
この物理原理は、量子デバイスの電流電圧特性のヒステリシス的挙動を可能にすることを実証する。
論文 参考訳(メタデータ) (2024-05-01T16:47:23Z) - Quantum dynamics of superconductor-quantum dot-superconductor Josephson
junctions [0.0]
コンデンサ型S-QD-S接合の自己整合量子化を経路積分定式化により検討する。
結果は、任意のインピーダンス環境においてS-QD-S接合を取り入れた将来の実験と量子デバイスを理解するために重要である。
論文 参考訳(メタデータ) (2024-02-15T21:14:59Z) - Theory of superconducting qubits beyond the lumped element approximation [0.0]
ジョセフソン結合を非摂動的に扱う形式論を発展させる。
我々はフェルミ海効果が小電荷量子ビットの有効容量に寄与することを示した。
また, 絡み合った電子の数を計算するのに適した超伝導シュロディンガー猫の微視的波動関数も提供する。
論文 参考訳(メタデータ) (2022-11-20T02:51:37Z) - Nonperturbative Waveguide Quantum Electrodynamics [0.0]
導波路量子電磁力学の平衡特性について検討する。
連続体における対称性が保護された多体境界状態から有効質量の強い再正規化まで,いくつかの驚くべき特徴が明らかになった。
結果はマイクロ波共振器や光電子結晶に結合した原子と相互作用する超伝導量子ビットの実験に関係している。
論文 参考訳(メタデータ) (2021-05-18T21:15:57Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
2つの量子ビットの最も単純なセットアップは、光導波路に調和して閉じ込められ、量子光学相互作用の超強結合状態を可能にする。
系の固有の開性と強い光学的結合の組み合わせは、パリティ時(PT)対称性の出現につながる。
$mathcalPT$相転移は、最先端の導波路QEDセットアップで観測可能な長生きのサブラジアント状態を駆動する。
論文 参考訳(メタデータ) (2020-07-04T11:02:20Z) - Circuit Quantum Electrodynamics [62.997667081978825]
マクロレベルの量子力学的効果は、1980年代にジョセフソン接合型超伝導回路で初めて研究された。
過去20年間で、量子情報科学の出現は、これらの回路を量子情報プロセッサの量子ビットとして利用するための研究を強化してきた。
量子電磁力学(QED)の分野は、今では独立して繁栄する研究分野となっている。
論文 参考訳(メタデータ) (2020-05-26T12:47:38Z) - Dissipation-engineering of nonreciprocal quantum dot circuits: An
input-output approach [6.211723927647019]
ナノエレクトロニクスデバイスにおける非相互効果は、電子輸送と工学的な量子電子回路の操作にユニークな可能性をもたらす。
固体量子ドットアーキテクチャにおける非相互輸送の一般的なインプット・アウトプット記述を提供する。
非相互結合は共振輸送系において一方向電子流を誘導することを示す。
論文 参考訳(メタデータ) (2020-04-11T14:13:14Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
本稿では、非相互デバイスと、基底空間が2倍縮退し、基底状態がGottesman-Kitaev-Preskill(GKP)符号の近似符号であるジョセフソン接合からなる回路設計について述べる。
この回路は、電荷やフラックスノイズなどの超伝導回路の一般的なノイズチャネルに対して自然に保護されており、受動的量子誤差補正に使用できることを示唆している。
論文 参考訳(メタデータ) (2020-02-18T16:45:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。