論文の概要: Identifying Latent Causal Content for Multi-Source Domain Adaptation
- arxiv url: http://arxiv.org/abs/2208.14161v1
- Date: Tue, 30 Aug 2022 11:25:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-31 12:40:09.845644
- Title: Identifying Latent Causal Content for Multi-Source Domain Adaptation
- Title(参考訳): マルチソース・ドメイン適応のための潜在因果コンテンツの同定
- Authors: Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Kun
Zhang, Javen Qinfeng Shi
- Abstract要約: 本稿では,潜時コンテンツ変数に基づく不変ラベル分布条件を学習するMSDAの新しい手法を提案する。
潜時空間の推移性により潜時型変数は識別できないが、潜時型変数は単純なスケーリングで識別可能であることを示す。
- 参考スコア(独自算出の注目度): 53.05434790671263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-source domain adaptation (MSDA) learns to predict the labels in target
domain data, under the setting where all data from multiple source domains are
labelled and the data from the target domain are unlabeled. To handle this
problem, most of methods focus on learning invariant representations across
domains. However, their success severely relies on the assumption that label
distribution remains unchanged across domains. To mitigate it, we propose a new
assumption, latent covariate shift, where the marginal distribution of the
latent content variable changes across domains, and the conditional
distribution of the label given the latent content remains invariant across
domains. We introduce a latent style variable to complement the latent content
variable forming a latent causal graph as the data and label generating
process. We show that although the latent style variable is unidentifiable due
to transitivity property in the latent space, the latent content variable can
be identified up to simple scaling under some mild conditions. This motivates
us to propose a novel method for MSDA, which learns the invariant label
distribution conditional on the latent content variable, instead of learning
invariant representations. Empirical evaluation on simulation and real data
demonstrates the effectiveness of the proposed method, compared with many
state-of-the-art methods based on invariant representation.
- Abstract(参考訳): マルチソースドメイン適応(MSDA)は、複数のソースドメインからのすべてのデータがラベル付けされ、対象ドメインからのデータがラベル付けされていない設定の下で、ターゲットドメインデータのラベルを予測することを学ぶ。
この問題に対処するため、ほとんどのメソッドはドメイン間の不変表現の学習に焦点を当てている。
しかし、それらの成功はドメイン間でラベル分布が変わらないという仮定に大きく依存している。
そこで本研究では,潜在内容変数の限界分布がドメイン間で変化し,潜在内容が与えられたラベルの条件分布がドメイン間で不変である,新たな仮定である潜在共変量シフトを提案する。
データおよびラベル生成プロセスとして、潜在因果グラフを形成する潜在コンテンツ変数を補完する潜在スタイル変数を導入する。
潜時空間の推移性により潜時型変数は同定できないが、潜時型変数は若干の温和な条件下で単純なスケーリングまで識別可能であることを示す。
これにより、不変表現を学習するのではなく、潜在コンテンツ変数に基づいて不変ラベル分布条件を学習するMSDAの新しい手法を提案する。
シミュレーションおよび実データに対する経験的評価は,不変表現に基づく多くの最先端手法と比較し,提案手法の有効性を示す。
関連論文リスト
- Semi Supervised Heterogeneous Domain Adaptation via Disentanglement and Pseudo-Labelling [4.33404822906643]
半教師付きドメイン適応法は、ソースラベル付きドメインからの情報を利用して、少ないラベル付きターゲットドメインを一般化する。
このような設定は半教師付き不均質ドメイン適応(SSHDA)と表記される。
SHEDD(Semi-supervised Heterogeneous Domain Adaptation via Disentanglement)は,対象ドメインの学習に適したエンドツーエンドのニューラルネットワークフレームワークである。
論文 参考訳(メタデータ) (2024-06-20T08:02:49Z) - Proxy Methods for Domain Adaptation [78.03254010884783]
プロキシ変数は、遅延変数を明示的にリカバリしたりモデル化したりすることなく、分散シフトへの適応を可能にする。
両設定の複雑な分散シフトに適応する2段階のカーネル推定手法を開発した。
論文 参考訳(メタデータ) (2024-03-12T09:32:41Z) - Algorithmic Fairness Generalization under Covariate and Dependence Shifts Simultaneously [28.24666589680547]
公平かつ不変な分類器の学習を目的とした,単純かつ効果的な手法を提案する。
モデルを用いて様々な合成データドメインを拡張することにより、ソースドメインの公平かつ不変な分類器を学習する。
この分類器は未知の対象領域に一般化することができ、モデル予測と公平性の懸念の両方を維持できる。
論文 参考訳(メタデータ) (2023-11-23T05:52:00Z) - Subspace Identification for Multi-Source Domain Adaptation [30.98339926222619]
マルチソースドメイン適応(MSDA)手法は、複数のラベル付きソースドメインからラベルなしターゲットドメインへ知識を転送することを目的としている。
現在の方法は適切な数のドメイン、潜伏変数の単調変換、不変ラベル分布を必要とする。
本稿では,領域不変変数と領域固有変数の絡み合いを保証する部分空間同定理論を提案する。
論文 参考訳(メタデータ) (2023-10-07T07:52:59Z) - Partial Identifiability for Domain Adaptation [17.347755928718872]
iMSDAと呼ばれる実用的なドメイン適応フレームワークを提案する。
iMSDAは、ベンチマークデータセット上で最先端のドメイン適応アルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2023-06-10T19:04:03Z) - Source-free Domain Adaptation Requires Penalized Diversity [60.04618512479438]
ソースデータがない場合、異なるドメイン間の知識伝達に対処するために、ソースフリードメイン適応(SFDA)が導入された。
教師なしのFDAでは、多様性はソース上の1つの仮説を学習するか、共有された特徴抽出器で複数の仮説を学習することに限定される。
本稿では,異なる特徴抽出器を用いて表現多様性を促進する新しい無教師付きSFDAアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-06T00:20:19Z) - Cyclically Disentangled Feature Translation for Face Anti-spoofing [61.70377630461084]
循環不整合特徴変換ネットワーク(CDFTN)と呼ばれる新しい領域適応手法を提案する。
CDFTNは、(1)ソースドメイン不変の生長特徴と2)ドメイン固有のコンテンツ特徴とを持つ擬似ラベル付きサンプルを生成する。
ソースドメインラベルの監督の下で、合成擬似ラベル付き画像に基づいてロバスト分類器を訓練する。
論文 参考訳(メタデータ) (2022-12-07T14:12:34Z) - Learning Conditional Invariance through Cycle Consistency [60.85059977904014]
本稿では,データセットの変動の有意義な要因と独立な要因を識別する新しい手法を提案する。
提案手法は,対象プロパティと残りの入力情報に対する2つの別個の潜在部分空間を含む。
我々は,より意味のある因子を同定し,よりスペーサーや解釈可能なモデルに導く合成および分子データについて実証する。
論文 参考訳(メタデータ) (2021-11-25T17:33:12Z) - Instrumental Variable-Driven Domain Generalization with Unobserved
Confounders [53.735614014067394]
ドメイン一般化(Domain Generalization, DG)は、複数のソースドメインから、目に見えないターゲットドメインをうまく一般化できるモデルを学ぶことを目的としている。
観測不能な共同創設者のバイアスを2段階学習で除去し,インストゥルメンタル変数駆動型DG法(IV-DG)を提案する。
第1段階では、あるドメインの入力特徴の条件分布を他のドメインの入力特徴の条件分布として学習する。
第2段階では,ラベルと学習条件分布の関係を推定する。
論文 参考訳(メタデータ) (2021-10-04T13:32:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。