論文の概要: Algorithmic Fairness Generalization under Covariate and Dependence Shifts Simultaneously
- arxiv url: http://arxiv.org/abs/2311.13816v2
- Date: Tue, 21 May 2024 13:51:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 19:01:09.278482
- Title: Algorithmic Fairness Generalization under Covariate and Dependence Shifts Simultaneously
- Title(参考訳): 共変量と依存シフトの同時によるアルゴリズムフェアネスの一般化
- Authors: Chen Zhao, Kai Jiang, Xintao Wu, Haoliang Wang, Latifur Khan, Christan Grant, Feng Chen,
- Abstract要約: 公平かつ不変な分類器の学習を目的とした,単純かつ効果的な手法を提案する。
モデルを用いて様々な合成データドメインを拡張することにより、ソースドメインの公平かつ不変な分類器を学習する。
この分類器は未知の対象領域に一般化することができ、モデル予測と公平性の懸念の両方を維持できる。
- 参考スコア(独自算出の注目度): 28.24666589680547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The endeavor to preserve the generalization of a fair and invariant classifier across domains, especially in the presence of distribution shifts, becomes a significant and intricate challenge in machine learning. In response to this challenge, numerous effective algorithms have been developed with a focus on addressing the problem of fairness-aware domain generalization. These algorithms are designed to navigate various types of distribution shifts, with a particular emphasis on covariate and dependence shifts. In this context, covariate shift pertains to changes in the marginal distribution of input features, while dependence shift involves alterations in the joint distribution of the label variable and sensitive attributes. In this paper, we introduce a simple but effective approach that aims to learn a fair and invariant classifier by simultaneously addressing both covariate and dependence shifts across domains. We assert the existence of an underlying transformation model can transform data from one domain to another, while preserving the semantics related to non-sensitive attributes and classes. By augmenting various synthetic data domains through the model, we learn a fair and invariant classifier in source domains. This classifier can then be generalized to unknown target domains, maintaining both model prediction and fairness concerns. Extensive empirical studies on four benchmark datasets demonstrate that our approach surpasses state-of-the-art methods.
- Abstract(参考訳): 公平かつ不変な分類器の一般化、特に分布シフトの存在下での一般化を維持する努力は、機械学習において重要かつ複雑な課題となる。
この課題に対して、フェアネスを意識した領域一般化の問題に対処することに焦点を当てた、多数の効果的なアルゴリズムが開発されている。
これらのアルゴリズムは、様々な種類の分散シフトをナビゲートするために設計されており、特に共変量および依存シフトに重点を置いている。
この文脈では、共変量シフトは入力特徴の限界分布の変化に関連するが、依存シフトはラベル変数と感度属性の結合分布の変化を伴う。
本稿では,ドメイン間の共変量と依存シフトを同時に扱うことにより,公平かつ不変な分類器を学習することを目的とした,単純かつ効果的なアプローチを提案する。
基礎となる変換モデルの存在は、非感受性属性やクラスに関連するセマンティクスを保ちながら、データをあるドメインから別のドメインに変換することができる、と我々は主張する。
モデルを用いて様々な合成データドメインを拡張することにより、ソースドメインの公平かつ不変な分類器を学習する。
この分類器は未知の対象領域に一般化することができ、モデル予測と公平性の懸念の両方を維持できる。
4つのベンチマークデータセットに関する大規模な実証研究は、我々のアプローチが最先端の手法を超越していることを示している。
関連論文リスト
- FEED: Fairness-Enhanced Meta-Learning for Domain Generalization [13.757379847454372]
モデルフェアネスを認識しながら配布外データに一般化することは、メタラーニングにおいて重要かつ困難な問題である。
本稿では,ドメインの一般化能力を大幅に向上させるフェアネスを考慮したメタラーニング手法を提案する。
論文 参考訳(メタデータ) (2024-11-02T17:34:33Z) - Learning Fair Invariant Representations under Covariate and Correlation Shifts Simultaneously [10.450977234741524]
フェアネスを意識したドメイン不変予測器の学習に焦点をあてた,新しい手法を提案する。
提案手法は, モデル精度だけでなく, グループ的, 個人的公正性についても, 最先端の手法を超越した手法である。
論文 参考訳(メタデータ) (2024-08-18T00:01:04Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
本研究では,相互依存データに対する問題に対して,学習可能な分散場を持つ幾何学的拡散モデルを提案する。
因果推論によって新たな学習目標が導出され、ドメイン間で無神経な相互依存の一般化可能なパターンを学習するためのモデルが導出される。
論文 参考訳(メタデータ) (2024-06-07T14:29:21Z) - Graphs Generalization under Distribution Shifts [11.963958151023732]
グラフ学習不変領域ジェネレーション(GLIDER)という新しいフレームワークを導入する。
本モデルでは,ノード特徴量と位相構造量の分布シフトを同時に行う場合,ノードレベルのOOD一般化に基づくベースライン手法よりも優れる。
論文 参考訳(メタデータ) (2024-03-25T00:15:34Z) - Identifiable Latent Causal Content for Domain Adaptation under Latent Covariate Shift [82.14087963690561]
マルチソースドメイン適応(MSDA)は、ラベル付き対象ドメインのラベル予測関数を学習する際の課題に対処する。
本稿では,潜在コンテンツ変数と潜時スタイル変数とともに,ドメイン間の潜時雑音を導入し,複雑な因果生成モデルを提案する。
提案手法は、シミュレーションと実世界の両方のデータセットに対して、例外的な性能と有効性を示す。
論文 参考訳(メタデータ) (2022-08-30T11:25:15Z) - Improving Diversity with Adversarially Learned Transformations for
Domain Generalization [81.26960899663601]
本稿では、ニューラルネットワークを用いた逆学習変換(ALT)を用いて、可塑性かつハードな画像変換をモデル化する新しいフレームワークを提案する。
我々は、ALTが既存の多様性モジュールと自然に連携して、ソースドメインの大規模変換によって最先端のパフォーマンスを実現することを示す。
論文 参考訳(メタデータ) (2022-06-15T18:05:24Z) - Instrumental Variable-Driven Domain Generalization with Unobserved
Confounders [53.735614014067394]
ドメイン一般化(Domain Generalization, DG)は、複数のソースドメインから、目に見えないターゲットドメインをうまく一般化できるモデルを学ぶことを目的としている。
観測不能な共同創設者のバイアスを2段階学習で除去し,インストゥルメンタル変数駆動型DG法(IV-DG)を提案する。
第1段階では、あるドメインの入力特徴の条件分布を他のドメインの入力特徴の条件分布として学習する。
第2段階では,ラベルと学習条件分布の関係を推定する。
論文 参考訳(メタデータ) (2021-10-04T13:32:57Z) - Contrastive ACE: Domain Generalization Through Alignment of Causal
Mechanisms [34.99779761100095]
ドメインの一般化は、異なる分布にまたがる知識不変性を学ぶことを目的としている。
ラベルに対する特徴の因果効果の平均的因果効果の因果不変性を考察する。
論文 参考訳(メタデータ) (2021-06-02T04:01:22Z) - A Bit More Bayesian: Domain-Invariant Learning with Uncertainty [111.22588110362705]
ドメインの一般化は、ドメインシフトと、ターゲットドメインデータのアクセス不能に起因する不確実性のために困難である。
本稿では,変分ベイズ推定に基づく確率的枠組みを用いて,両課題に対処する。
2層ベイズ型ニューラルネットワークで共同で確立されたドメイン不変表現と分類器を導出する。
論文 参考訳(メタデータ) (2021-05-09T21:33:27Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。