論文の概要: Identifiable Latent Causal Content for Domain Adaptation under Latent Covariate Shift
- arxiv url: http://arxiv.org/abs/2208.14161v3
- Date: Sun, 31 Mar 2024 23:09:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 14:21:15.348845
- Title: Identifiable Latent Causal Content for Domain Adaptation under Latent Covariate Shift
- Title(参考訳): 潜在共変量シフト下でのドメイン適応における潜在因果関係の同定
- Authors: Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang, Javen Qinfeng Shi,
- Abstract要約: マルチソースドメイン適応(MSDA)は、ラベル付き対象ドメインのラベル予測関数を学習する際の課題に対処する。
本稿では,潜在コンテンツ変数と潜時スタイル変数とともに,ドメイン間の潜時雑音を導入し,複雑な因果生成モデルを提案する。
提案手法は、シミュレーションと実世界の両方のデータセットに対して、例外的な性能と有効性を示す。
- 参考スコア(独自算出の注目度): 82.14087963690561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-source domain adaptation (MSDA) addresses the challenge of learning a label prediction function for an unlabeled target domain by leveraging both the labeled data from multiple source domains and the unlabeled data from the target domain. Conventional MSDA approaches often rely on covariate shift or conditional shift paradigms, which assume a consistent label distribution across domains. However, this assumption proves limiting in practical scenarios where label distributions do vary across domains, diminishing its applicability in real-world settings. For example, animals from different regions exhibit diverse characteristics due to varying diets and genetics. Motivated by this, we propose a novel paradigm called latent covariate shift (LCS), which introduces significantly greater variability and adaptability across domains. Notably, it provides a theoretical assurance for recovering the latent cause of the label variable, which we refer to as the latent content variable. Within this new paradigm, we present an intricate causal generative model by introducing latent noises across domains, along with a latent content variable and a latent style variable to achieve more nuanced rendering of observational data. We demonstrate that the latent content variable can be identified up to block identifiability due to its versatile yet distinct causal structure. We anchor our theoretical insights into a novel MSDA method, which learns the label distribution conditioned on the identifiable latent content variable, thereby accommodating more substantial distribution shifts. The proposed approach showcases exceptional performance and efficacy on both simulated and real-world datasets.
- Abstract(参考訳): マルチソースドメイン適応(MSDA)は、複数のソースドメインからのラベル付きデータと対象ドメインからのラベルなしデータの両方を活用することにより、ラベル付き対象ドメインのラベル予測関数を学習する課題に対処する。
従来のMSDAアプローチは、ドメイン間で一貫したラベル分布を仮定する共変量シフトや条件シフトパラダイムに依存していることが多い。
しかし、この仮定は、ラベルの分布がドメインによって異なる現実的なシナリオにおいて制限されることを証明し、実世界における適用性を低下させる。
例えば、異なる地域の動物は、様々な食生活と遺伝学のために様々な特徴を示す。
そこで我々はLCS(Latent Covariate shift)と呼ばれる新しいパラダイムを提案する。
特に、ラベル変数の潜在原因を回復するための理論的保証を提供する。
この新パラダイムでは、観測データのよりニュアンスなレンダリングを実現するために、潜在コンテンツ変数と潜時スタイル変数とともに、ドメイン間で潜時ノイズを導入し、複雑な因果生成モデルを提案する。
本研究は, 潜在内容変数を同定し, 特徴的だが因果構造が異なるため, 識別性をブロックできることを実証する。
提案手法は,識別可能な潜在コンテンツ変数に条件付きラベル分布を学習し,より実質的な分布シフトを調節する手法である。
提案手法は、シミュレーションと実世界の両方のデータセットに対して、例外的な性能と有効性を示す。
関連論文リスト
- Semi Supervised Heterogeneous Domain Adaptation via Disentanglement and Pseudo-Labelling [4.33404822906643]
半教師付きドメイン適応法は、ソースラベル付きドメインからの情報を利用して、少ないラベル付きターゲットドメインを一般化する。
このような設定は半教師付き不均質ドメイン適応(SSHDA)と表記される。
SHEDD(Semi-supervised Heterogeneous Domain Adaptation via Disentanglement)は,対象ドメインの学習に適したエンドツーエンドのニューラルネットワークフレームワークである。
論文 参考訳(メタデータ) (2024-06-20T08:02:49Z) - Proxy Methods for Domain Adaptation [78.03254010884783]
プロキシ変数は、遅延変数を明示的にリカバリしたりモデル化したりすることなく、分散シフトへの適応を可能にする。
両設定の複雑な分散シフトに適応する2段階のカーネル推定手法を開発した。
論文 参考訳(メタデータ) (2024-03-12T09:32:41Z) - Algorithmic Fairness Generalization under Covariate and Dependence Shifts Simultaneously [28.24666589680547]
公平かつ不変な分類器の学習を目的とした,単純かつ効果的な手法を提案する。
モデルを用いて様々な合成データドメインを拡張することにより、ソースドメインの公平かつ不変な分類器を学習する。
この分類器は未知の対象領域に一般化することができ、モデル予測と公平性の懸念の両方を維持できる。
論文 参考訳(メタデータ) (2023-11-23T05:52:00Z) - Subspace Identification for Multi-Source Domain Adaptation [30.98339926222619]
マルチソースドメイン適応(MSDA)手法は、複数のラベル付きソースドメインからラベルなしターゲットドメインへ知識を転送することを目的としている。
現在の方法は適切な数のドメイン、潜伏変数の単調変換、不変ラベル分布を必要とする。
本稿では,領域不変変数と領域固有変数の絡み合いを保証する部分空間同定理論を提案する。
論文 参考訳(メタデータ) (2023-10-07T07:52:59Z) - Partial Identifiability for Domain Adaptation [17.347755928718872]
iMSDAと呼ばれる実用的なドメイン適応フレームワークを提案する。
iMSDAは、ベンチマークデータセット上で最先端のドメイン適応アルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2023-06-10T19:04:03Z) - Source-free Domain Adaptation Requires Penalized Diversity [60.04618512479438]
ソースデータがない場合、異なるドメイン間の知識伝達に対処するために、ソースフリードメイン適応(SFDA)が導入された。
教師なしのFDAでは、多様性はソース上の1つの仮説を学習するか、共有された特徴抽出器で複数の仮説を学習することに限定される。
本稿では,異なる特徴抽出器を用いて表現多様性を促進する新しい無教師付きSFDAアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-06T00:20:19Z) - Cyclically Disentangled Feature Translation for Face Anti-spoofing [61.70377630461084]
循環不整合特徴変換ネットワーク(CDFTN)と呼ばれる新しい領域適応手法を提案する。
CDFTNは、(1)ソースドメイン不変の生長特徴と2)ドメイン固有のコンテンツ特徴とを持つ擬似ラベル付きサンプルを生成する。
ソースドメインラベルの監督の下で、合成擬似ラベル付き画像に基づいてロバスト分類器を訓練する。
論文 参考訳(メタデータ) (2022-12-07T14:12:34Z) - Learning Conditional Invariance through Cycle Consistency [60.85059977904014]
本稿では,データセットの変動の有意義な要因と独立な要因を識別する新しい手法を提案する。
提案手法は,対象プロパティと残りの入力情報に対する2つの別個の潜在部分空間を含む。
我々は,より意味のある因子を同定し,よりスペーサーや解釈可能なモデルに導く合成および分子データについて実証する。
論文 参考訳(メタデータ) (2021-11-25T17:33:12Z) - Instrumental Variable-Driven Domain Generalization with Unobserved
Confounders [53.735614014067394]
ドメイン一般化(Domain Generalization, DG)は、複数のソースドメインから、目に見えないターゲットドメインをうまく一般化できるモデルを学ぶことを目的としている。
観測不能な共同創設者のバイアスを2段階学習で除去し,インストゥルメンタル変数駆動型DG法(IV-DG)を提案する。
第1段階では、あるドメインの入力特徴の条件分布を他のドメインの入力特徴の条件分布として学習する。
第2段階では,ラベルと学習条件分布の関係を推定する。
論文 参考訳(メタデータ) (2021-10-04T13:32:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。