Probing Contextual Diversity for Dense Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2208.14195v1
- Date: Tue, 30 Aug 2022 12:10:30 GMT
- Title: Probing Contextual Diversity for Dense Out-of-Distribution Detection
- Authors: Silvio Galesso, Maria Alejandra Bravo, Mehdi Naouar, Thomas Brox
- Abstract summary: Detection of out-of-distribution (OoD) samples in the context of image classification has recently become an area of interest and active study.
We introduce MOoSe, an efficient strategy to leverage the various levels of context represented within semantic segmentation models.
We show that even a simple aggregation of multi-scale representations has consistently positive effects on OoD detection and uncertainty estimation.
- Score: 33.95082228484776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detection of out-of-distribution (OoD) samples in the context of image
classification has recently become an area of interest and active study, along
with the topic of uncertainty estimation, to which it is closely related. In
this paper we explore the task of OoD segmentation, which has been studied less
than its classification counterpart and presents additional challenges.
Segmentation is a dense prediction task for which the model's outcome for each
pixel depends on its surroundings. The receptive field and the reliance on
context play a role for distinguishing different classes and, correspondingly,
for spotting OoD entities. We introduce MOoSe, an efficient strategy to
leverage the various levels of context represented within semantic segmentation
models and show that even a simple aggregation of multi-scale representations
has consistently positive effects on OoD detection and uncertainty estimation.
Related papers
- Pixel-Level Domain Adaptation: A New Perspective for Enhancing Weakly Supervised Semantic Segmentation [13.948425538725138]
We propose a Pixel-Level Domain Adaptation (PLDA) method to encourage the model in learning pixel-wise domain-invariant features.
We experimentally demonstrate the effectiveness of our approach under a wide range of settings.
arXiv Detail & Related papers (2024-08-04T14:14:54Z) - Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - Tackling Ambiguity from Perspective of Uncertainty Inference and Affinity Diversification for Weakly Supervised Semantic Segmentation [12.308473939796945]
Weakly supervised semantic segmentation (WSSS) with image-level labels aims to achieve dense tasks without laborious annotations.
The performance of WSSS, especially the stages of generating Class Activation Maps (CAMs) and refining pseudo masks, widely suffers from ambiguity.
We propose UniA, a unified single-staged WSSS framework, to tackle this issue from the perspective of uncertainty inference and affinity diversification.
arXiv Detail & Related papers (2024-04-12T01:54:59Z) - Weakly-Supervised Cross-Domain Segmentation of Electron Microscopy with Sparse Point Annotation [1.124958340749622]
We introduce a multitask learning framework to leverage correlations among the counting, detection, and segmentation tasks.
We develop a cross-position cut-and-paste for label augmentation and an entropy-based pseudo-label selection.
The proposed model is capable of significantly outperforming UDA methods and produces comparable performance as the supervised counterpart.
arXiv Detail & Related papers (2024-03-31T12:22:23Z) - Maturity-Aware Active Learning for Semantic Segmentation with
Hierarchically-Adaptive Sample Assessment [18.65352271757926]
"Maturity-Aware Distribution Breakdown-based Active Learning" (MADBAL) is an AL method that takes into account the different "sample" definitions jointly.
MADBAL makes significant performance leaps even in the early AL stage, hence reducing the training burden significantly.
It outperforms state-of-the-art methods on Cityscapes and PASCAL VOC datasets as verified in our experiments.
arXiv Detail & Related papers (2023-08-28T21:13:04Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
Recent state-of-the-art active learning methods have mostly leveraged Generative Adversarial Networks (GAN) for sample acquisition.
We propose in this paper a novel active learning framework that we call Maximum Discrepancy for Active Learning (MCDAL)
In particular, we utilize two auxiliary classification layers that learn tighter decision boundaries by maximizing the discrepancies among them.
arXiv Detail & Related papers (2021-07-23T06:57:08Z) - Modeling Discriminative Representations for Out-of-Domain Detection with
Supervised Contrastive Learning [16.77134235390429]
Key challenge of OOD detection is to learn discriminative semantic features.
We propose a supervised contrastive learning objective to minimize intra-class variance.
We employ an adversarial augmentation mechanism to obtain pseudo diverse views of a sample.
arXiv Detail & Related papers (2021-05-29T12:54:22Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
We propose attentional prototype inference (API), a probabilistic latent variable framework for few-shot segmentation.
We define a global latent variable to represent the prototype of each object category, which we model as a probabilistic distribution.
We conduct extensive experiments on four benchmarks, where our proposal obtains at least competitive and often better performance than state-of-the-art prototype-based methods.
arXiv Detail & Related papers (2021-05-14T06:58:44Z) - Margin Preserving Self-paced Contrastive Learning Towards Domain
Adaptation for Medical Image Segmentation [51.93711960601973]
We propose a novel margin preserving self-paced contrastive Learning model for cross-modal medical image segmentation.
With the guidance of progressively refined semantic prototypes, a novel margin preserving contrastive loss is proposed to boost the discriminability of embedded representation space.
Experiments on cross-modal cardiac segmentation tasks demonstrate that MPSCL significantly improves semantic segmentation performance.
arXiv Detail & Related papers (2021-03-15T15:23:10Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.