Tackling Ambiguity from Perspective of Uncertainty Inference and Affinity Diversification for Weakly Supervised Semantic Segmentation
- URL: http://arxiv.org/abs/2404.08195v1
- Date: Fri, 12 Apr 2024 01:54:59 GMT
- Title: Tackling Ambiguity from Perspective of Uncertainty Inference and Affinity Diversification for Weakly Supervised Semantic Segmentation
- Authors: Zhiwei Yang, Yucong Meng, Kexue Fu, Shuo Wang, Zhijian Song,
- Abstract summary: Weakly supervised semantic segmentation (WSSS) with image-level labels aims to achieve dense tasks without laborious annotations.
The performance of WSSS, especially the stages of generating Class Activation Maps (CAMs) and refining pseudo masks, widely suffers from ambiguity.
We propose UniA, a unified single-staged WSSS framework, to tackle this issue from the perspective of uncertainty inference and affinity diversification.
- Score: 12.308473939796945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly supervised semantic segmentation (WSSS) with image-level labels intends to achieve dense tasks without laborious annotations. However, due to the ambiguous contexts and fuzzy regions, the performance of WSSS, especially the stages of generating Class Activation Maps (CAMs) and refining pseudo masks, widely suffers from ambiguity while being barely noticed by previous literature. In this work, we propose UniA, a unified single-staged WSSS framework, to efficiently tackle this issue from the perspective of uncertainty inference and affinity diversification, respectively. When activating class objects, we argue that the false activation stems from the bias to the ambiguous regions during the feature extraction. Therefore, we design a more robust feature representation with a probabilistic Gaussian distribution and introduce the uncertainty estimation to avoid the bias. A distribution loss is particularly proposed to supervise the process, which effectively captures the ambiguity and models the complex dependencies among features. When refining pseudo labels, we observe that the affinity from the prevailing refinement methods intends to be similar among ambiguities. To this end, an affinity diversification module is proposed to promote diversity among semantics. A mutual complementing refinement is proposed to initially rectify the ambiguous affinity with multiple inferred pseudo labels. More importantly, a contrastive affinity loss is further designed to diversify the relations among unrelated semantics, which reliably propagates the diversity into the whole feature representations and helps generate better pseudo masks. Extensive experiments are conducted on PASCAL VOC, MS COCO, and medical ACDC datasets, which validate the efficiency of UniA tackling ambiguity and the superiority over recent single-staged or even most multi-staged competitors.
Related papers
- Improving Uncertainty Quantification in Large Language Models via Semantic Embeddings [11.33157177182775]
Accurately quantifying uncertainty in large language models (LLMs) is crucial for their reliable deployment.
Current state-of-the-art methods for measuring semantic uncertainty in LLMs rely on strict bidirectional entailment criteria.
We propose a novel approach that leverages semantic embeddings to achieve smoother and more robust estimation of semantic uncertainty.
arXiv Detail & Related papers (2024-10-30T04:41:46Z) - Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation [49.827306773992376]
Continual Test-Time Adaptation (CTTA) is proposed to migrate a source pre-trained model to continually changing target distributions.
Our proposed method attains state-of-the-art performance in both classification and segmentation CTTA tasks.
arXiv Detail & Related papers (2023-12-19T15:34:52Z) - Uncertain Facial Expression Recognition via Multi-task Assisted
Correction [43.02119884581332]
We propose a novel method of multi-task assisted correction in addressing uncertain facial expression recognition called MTAC.
Specifically, a confidence estimation block and a weighted regularization module are applied to highlight solid samples and suppress uncertain samples in every batch.
Experiments on RAF-DB, AffectNet, and AffWild2 datasets demonstrate that the MTAC obtains substantial improvements over baselines when facing synthetic and real uncertainties.
arXiv Detail & Related papers (2022-12-14T10:28:08Z) - Probing Contextual Diversity for Dense Out-of-Distribution Detection [33.95082228484776]
Detection of out-of-distribution (OoD) samples in the context of image classification has recently become an area of interest and active study.
We introduce MOoSe, an efficient strategy to leverage the various levels of context represented within semantic segmentation models.
We show that even a simple aggregation of multi-scale representations has consistently positive effects on OoD detection and uncertainty estimation.
arXiv Detail & Related papers (2022-08-30T12:10:30Z) - Identifiable Latent Causal Content for Domain Adaptation under Latent Covariate Shift [82.14087963690561]
Multi-source domain adaptation (MSDA) addresses the challenge of learning a label prediction function for an unlabeled target domain.
We present an intricate causal generative model by introducing latent noises across domains, along with a latent content variable and a latent style variable.
The proposed approach showcases exceptional performance and efficacy on both simulated and real-world datasets.
arXiv Detail & Related papers (2022-08-30T11:25:15Z) - Dive into Ambiguity: Latent Distribution Mining and Pairwise Uncertainty
Estimation for Facial Expression Recognition [59.52434325897716]
We propose a solution, named DMUE, to address the problem of annotation ambiguity from two perspectives.
For the former, an auxiliary multi-branch learning framework is introduced to better mine and describe the latent distribution in the label space.
For the latter, the pairwise relationship of semantic feature between instances are fully exploited to estimate the ambiguity extent in the instance space.
arXiv Detail & Related papers (2021-04-01T03:21:57Z) - Margin Preserving Self-paced Contrastive Learning Towards Domain
Adaptation for Medical Image Segmentation [51.93711960601973]
We propose a novel margin preserving self-paced contrastive Learning model for cross-modal medical image segmentation.
With the guidance of progressively refined semantic prototypes, a novel margin preserving contrastive loss is proposed to boost the discriminability of embedded representation space.
Experiments on cross-modal cardiac segmentation tasks demonstrate that MPSCL significantly improves semantic segmentation performance.
arXiv Detail & Related papers (2021-03-15T15:23:10Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z) - Learning Disentangled Representations with Latent Variation
Predictability [102.4163768995288]
This paper defines the variation predictability of latent disentangled representations.
Within an adversarial generation process, we encourage variation predictability by maximizing the mutual information between latent variations and corresponding image pairs.
We develop an evaluation metric that does not rely on the ground-truth generative factors to measure the disentanglement of latent representations.
arXiv Detail & Related papers (2020-07-25T08:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.