Advance quantum image representation and compression using DCTEFRQI
approach
- URL: http://arxiv.org/abs/2208.14277v1
- Date: Tue, 30 Aug 2022 13:54:09 GMT
- Title: Advance quantum image representation and compression using DCTEFRQI
approach
- Authors: Md Ershadul Haque, Manoranjon Paul, Anwaar Ulhaq, Tanmoy Debnath
- Abstract summary: We have proposed a DCTEFRQI (Direct Cosine Transform Efficient Flexible Representation of Quantum Image) algorithm to represent and compress gray image efficiently.
The objective of this work is to represent and compress various gray image size in quantum computer using DCT(Discrete Cosine Transform) and EFRQI (Efficient Flexible Representation of Quantum Image) approach together.
- Score: 0.5735035463793007
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In recent year, quantum image processing got a lot of attention in the field
of image processing due to opportunity to place huge image data in quantum
Hilbert space. Hilbert space or Euclidean space has infinite dimension to
locate and process the image data faster. Moreover, several researches show
that, the computational time of quantum process is faster than classical
computer. By encoding and compressing the image in quantum domain is still
challenging issue. From literature survey, we have proposed a DCTEFRQI (Direct
Cosine Transform Efficient Flexible Representation of Quantum Image) algorithm
to represent and compress gray image efficiently which save computational time
and minimize the complexity of preparation. The objective of this work is to
represent and compress various gray image size in quantum computer using
DCT(Discrete Cosine Transform) and EFRQI (Efficient Flexible Representation of
Quantum Image) approach together. Quirk simulation tool is used to design
corresponding quantum image circuit. Due to limitation of qubit, total 16
numbers of qubit are used to represent the gray scale image among those 8 are
used to map the coefficient values and the rest 8 are used to generate the
corresponding coefficient position. Theoretical analysis and experimental
result show that, proposed DCTEFRQI scheme provides better representation and
compression compare to DCT-GQIR, DWT-GQIR and DWT-EFRQI in terms of PSNR(Peak
Signal to Noise Ratio) and bit rate..
Related papers
- MISC: Ultra-low Bitrate Image Semantic Compression Driven by Large Multimodal Model [78.4051835615796]
This paper proposes a method called Multimodal Image Semantic Compression.
It consists of an LMM encoder for extracting the semantic information of the image, a map encoder to locate the region corresponding to the semantic, an image encoder generates an extremely compressed bitstream, and a decoder reconstructs the image based on the above information.
It can achieve optimal consistency and perception results while saving perceptual 50%, which has strong potential applications in the next generation of storage and communication.
arXiv Detail & Related papers (2024-02-26T17:11:11Z) - Deep learning as a tool for quantum error reduction in quantum image
processing [0.0]
We report the successful use of a generative adversarial network trained for image-to-image translation, in conjunction with Phase Unraveling error reduction method, for reducing overall error in images encoded using LPIQE.
Despite the limited availability and quantum volume of quantum computers, quantum image representation is a widely researched area.
arXiv Detail & Related papers (2023-11-08T10:14:50Z) - A quantum segmentation algorithm based on local adaptive threshold for
NEQR image [7.798738743268923]
The complexity of our algorithm can be reduced to $O(n2+q)$, which is an exponential speedup compared to the classic counterparts.
The experiment is conducted on IBM Q to show the feasibility of our algorithm in the noisy intermediate-scale quantum (NISQ) era.
arXiv Detail & Related papers (2023-10-02T04:01:42Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - Efficient quantum image representation and compression circuit using
zero-discarded state preparation approach [9.653976364051564]
A novel zero-discarded state connection novel enhance quantum representation (ZSCNEQR) is introduced to reduce complexity further.
The proposed method requires 11.76% less qubits compared to the recent existing method.
arXiv Detail & Related papers (2023-06-22T02:18:56Z) - Beyond Learned Metadata-based Raw Image Reconstruction [86.1667769209103]
Raw images have distinct advantages over sRGB images, e.g., linearity and fine-grained quantization levels.
They are not widely adopted by general users due to their substantial storage requirements.
We propose a novel framework that learns a compact representation in the latent space, serving as metadata.
arXiv Detail & Related papers (2023-06-21T06:59:07Z) - Block-wise quantum grayscale image representation and compression scheme
using state connection [9.653976364051564]
A novel SCMNEQR approach has been proposed that uses fewer qubits to map the arbitrary size of the grayscale image.
The experimental results show that the proposed approach outperforms the existing methods in terms of compression.
arXiv Detail & Related papers (2022-12-19T03:17:53Z) - Wavelet Feature Maps Compression for Image-to-Image CNNs [3.1542695050861544]
We propose a novel approach for high-resolution activation maps compression integrated with point-wise convolutions.
We achieve compression rates equivalent to 1-4bit activation quantization with relatively small and much more graceful degradation in performance.
arXiv Detail & Related papers (2022-05-24T20:29:19Z) - A hybrid quantum image edge detector for the NISQ era [62.997667081978825]
We propose a hybrid method for quantum edge detection based on the idea of a quantum artificial neuron.
Our method can be practically implemented on quantum computers, especially on those of the current noisy intermediate-scale quantum era.
arXiv Detail & Related papers (2022-03-22T22:02:09Z) - Improved FRQI on superconducting processors and its restrictions in the
NISQ era [62.997667081978825]
We study the feasibility of the Flexible Representation of Quantum Images (FRQI)
We also check experimentally what is the limit in the current noisy intermediate-scale quantum era.
We propose a method for simplifying the circuits needed for the FRQI.
arXiv Detail & Related papers (2021-10-29T10:42:43Z) - CNNs for JPEGs: A Study in Computational Cost [49.97673761305336]
Convolutional neural networks (CNNs) have achieved astonishing advances over the past decade.
CNNs are capable of learning robust representations of the data directly from the RGB pixels.
Deep learning methods capable of learning directly from the compressed domain have been gaining attention in recent years.
arXiv Detail & Related papers (2020-12-26T15:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.