Supervised Quantum Image Processing
- URL: http://arxiv.org/abs/2507.22039v1
- Date: Tue, 29 Jul 2025 17:40:59 GMT
- Title: Supervised Quantum Image Processing
- Authors: Marco Parigi, Mehran Khosrojerdi, Filippo Caruso, Leonardo Banchi,
- Abstract summary: Quantum image processing (QIP) is an interdisciplinary field between quantum information science and image processing.<n>We compare and examine the compression properties of four different Quantum Image Representations (QImRs)<n>Our results indicate that quantum kernels provide comparable classification average accuracy but require exponentially fewer resources for image storage.
- Score: 1.0499611180329806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the era of big data and artificial intelligence, the increasing volume of data and the demand to solve more and more complex computational challenges are two driving forces for improving the efficiency of data storage, processing and analysis. Quantum image processing (QIP) is an interdisciplinary field between quantum information science and image processing, which has the potential to alleviate some of these challenges by leveraging the power of quantum computing. In this work, we compare and examine the compression properties of four different Quantum Image Representations (QImRs): namely, Tensor Network Representation (TNR), Flexible Representation of Quantum Image (FRQI), Novel Enhanced Quantum Representation NEQR, and Quantum Probability Image Encoding (QPIE). Our simulations show that FRQI performs a higher compression of image information than TNR, NEQR, and QPIE. Furthermore, we investigate the trade-off between accuracy and memory in binary classification problems, evaluating the performance of quantum kernels based on QImRs compared to the classical linear kernel. Our results indicate that quantum kernels provide comparable classification average accuracy but require exponentially fewer resources for image storage.
Related papers
- Image Denoising with Machine Learning: A Novel Approach to Improve Quantum Image Processing Quality and Reliability [3.8704324110545767]
Quantum Image Processing (QIP) aims to utilize the benefits of quantum computing for manipulating and analyzing images.
QIP faces two challenges: the limitation of qubits and the presence of noise in a quantum machine.
We propose a novel approach to address the issue of noise in QIP by training and employing a machine learning model that identifies and corrects the noise in quantum-processed images.
arXiv Detail & Related papers (2024-02-18T16:55:54Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Quantum-parallel vectorized data encodings and computations on
trapped-ions and transmons QPUs [0.3262230127283452]
We introduce two new data encoding schemes, QCrank and QBArt.
QCrank encodes a sequence of real-valued data as rotations of the data qubits, allowing for high storage density.
QBArt embeds a binary representation of the data in the computational basis, requiring fewer quantum measurements.
arXiv Detail & Related papers (2023-01-19T01:26:32Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - RGB Image Classification with Quantum Convolutional Ansaetze [18.379304679643436]
We propose two types of quantum circuit ansaetze to simulate convolution operations on RGB images.
To the best of our knowledge, this is the first work of a quantum convolutional circuit to deal with RGB images effectively.
We also investigate the relationship between the size of quantum circuit ansatz and the learnability of the hybrid quantum-classical convolutional neural network.
arXiv Detail & Related papers (2021-07-23T09:38:59Z) - Quantum Image Processing: the truth, the whole truth, and nothing but
the truth about its problems on internal image representation and outcomes
recovering [0.0]
Three techniques of internal image-representation in a quantum computer are compared.
This study demonstrated the practical infeasibility in the implementation of FRQI and NEQR on a physical quantum computer.
arXiv Detail & Related papers (2020-02-06T19:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.