論文の概要: On the Automated Segmentation of Epicardial and Mediastinal Cardiac
Adipose Tissues Using Classification Algorithms
- arxiv url: http://arxiv.org/abs/2208.14352v1
- Date: Tue, 30 Aug 2022 15:57:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-31 12:49:28.606665
- Title: On the Automated Segmentation of Epicardial and Mediastinal Cardiac
Adipose Tissues Using Classification Algorithms
- Title(参考訳): 分類アルゴリズムを用いた心・縦隔心臓組織の自動分別について
- Authors: \'Erick Oliveira Rodrigues and Felipe Fernandes Cordeiro de Morais and
Aura Conci
- Abstract要約: 本研究は,心臓脂肪パッドの自動セグメンテーションのための新しい技術を提案する。
本手法は,心臓CT画像のセグメンテーションに分類アルゴリズムを適用することに基づく。
心内膜脂肪および縦隔脂肪の分類における平均精度は98.4%であった。
- 参考スコア(独自算出の注目度): 0.9176056742068814
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The quantification of fat depots on the surroundings of the heart is an
accurate procedure for evaluating health risk factors correlated with several
diseases. However, this type of evaluation is not widely employed in clinical
practice due to the required human workload. This work proposes a novel
technique for the automatic segmentation of cardiac fat pads. The technique is
based on applying classification algorithms to the segmentation of cardiac CT
images. Furthermore, we extensively evaluate the performance of several
algorithms on this task and discuss which provided better predictive models.
Experimental results have shown that the mean accuracy for the classification
of epicardial and mediastinal fats has been 98.4% with a mean true positive
rate of 96.2%. On average, the Dice similarity index, regarding the segmented
patients and the ground truth, was equal to 96.8%. Therfore, our technique has
achieved the most accurate results for the automatic segmentation of cardiac
fats, to date.
- Abstract(参考訳): 心臓周囲の脂肪蓄積量の定量化は、いくつかの疾患と相関する健康リスク因子を評価するための正確な方法である。
しかし、このタイプの評価は、必要な人的負荷のために臨床実践に広く採用されていない。
本研究は,心臓脂肪パッドの自動セグメンテーションのための新しい技術を提案する。
本手法は,心臓CT画像のセグメンテーションに分類アルゴリズムを適用することに基づく。
さらに,本課題に対するいくつかのアルゴリズムの性能評価を行い,より優れた予測モデルを提案する。
実験の結果, 心内膜脂肪および縦隔脂肪の分類における平均正率は98.4%であり, 96.2%であった。
平均すると、分割された患者と基礎的真理に関するサイス類似度指数は96.8%であった。
サーフォア法はこれまで、心臓脂肪の自動分画における最も正確な結果が得られてきた。
関連論文リスト
- Self-supervised Anomaly Detection Pretraining Enhances Long-tail ECG Diagnosis [32.37717219026923]
現在のコンピュータ支援心電図診断システムでは, まれながら重要な心疾患の診断に苦慮している。
本研究は、この制限に対処するために、自己教師付き異常検出プリトレーニングを用いた新しいアプローチを提案する。
異常検出モデルは、正常な心臓パターンからの微妙な偏差を検出し、局所化するように設計されている。
論文 参考訳(メタデータ) (2024-08-30T09:48:47Z) - Anomaly Detection in Electrocardiograms: Advancing Clinical Diagnosis Through Self-Supervised Learning [32.37717219026923]
既存のシステムは、心臓のマクロ/ミクロ構造における深刻な生命を脅かす問題や変化の前兆となる稀な心臓異常を見逃すことがしばしばある。
本研究は自己監督型異常検出(AD)に焦点をあて,異常を示す偏差を認識するために,正常心電図のみを訓練する。
本稿では,心電図の異常を自律的に検出し,局所化するために,正常心電図の膨大なデータセットを利用する,心電図ADのための新しい自己教師型学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-07T12:15:53Z) - Development of Automated Neural Network Prediction for Echocardiographic Left ventricular Ejection Fraction [36.58987036154144]
本稿では,深層ニューラルネットワークとアンサンブル学習に基づく新しいパイプライン手法を提案する。
この手法は,10,030個の心エコー図を含むオープンソースデータセットを用いて開発,検証した。
本研究では、LVEFの自動ニューラルネットワークに基づく計算が、心収縮機能のフレーム・バイ・フレーム手動評価を行う専門医に匹敵することを示した。
論文 参考訳(メタデータ) (2024-03-18T18:09:22Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - ECG-Based Patient Identification: A Comprehensive Evaluation Across Health and Activity Conditions [0.0]
本稿では,心電図信号を用いた医療システムにおける患者識別のための新しいアプローチを提案する。
畳み込みニューラルネットワーク(CNN)は、心電図信号から派生した特定のタイプの画像である心電図に基づいてユーザを分類するために使用される。
提案した同定システムは複数のデータベースで評価され、健常者では99.84%、循環器疾患では97.09%、健常者および不整脈患者では97.89%である。
論文 参考訳(メタデータ) (2023-02-13T17:14:55Z) - Accelerometry-based classification of circulatory states during
out-of-hospital cardiac arrest [1.2109519547057512]
心停止治療中の循環状態を自動予測する機械学習アルゴリズムを開発した。
このアルゴリズムは、ドイツのResuscitation Registryの917のケースに基づいて訓練された。
論文 参考訳(メタデータ) (2022-05-13T10:03:56Z) - A novel approach for the automated segmentation and volume
quantification of cardiac fats on computed tomography [0.9786690381850356]
本稿では,2種類の心臓脂肪の自律的分画と定量化のための統一的手法を提案する。
分節脂肪は心外および縦隔と呼ばれ、心膜によって互いに区別される。
提案手法は主に,所望のセグメンテーションを行うための登録アルゴリズムと分類アルゴリズムから構成される。
論文 参考訳(メタデータ) (2021-12-21T17:38:06Z) - Segmentation-free Heart Pathology Detection Using Deep Learning [12.065014651638943]
本研究では,新しいセグメンテーションフリー心音分類法を提案する。
具体的には、離散ウェーブレット変換を用いて信号をノイズ化し、続いて特徴抽出と特徴量削減を行う。
サポートベクトルマシンとディープニューラルネットワークは分類に使用される。
論文 参考訳(メタデータ) (2021-08-09T16:09:30Z) - Ensemble machine learning approach for screening of coronary heart
disease based on echocardiography and risk factors [19.076443235356873]
我々は,モデル積み重ねにより,多くの一般的な分類手法を統合する機械学習アプローチを開発した。
CHD分類の精度は,テストセットで約70%から87.7%に向上した。
論文 参考訳(メタデータ) (2021-05-20T11:04:58Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
本研究は,243名の非侵襲的特徴(年齢,性別,左室容積率,HRV15)を用いて,一連のANNの訓練と評価を行った。
最高の結果は、7つの入力パラメータと7つの隠れノードを使用して、トレーニングと検証データセットに対して98.9%と82%の精度で得られた。
論文 参考訳(メタデータ) (2020-10-29T19:14:41Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。