論文の概要: Congenital Heart Disease Classification Using Phonocardiograms: A Scalable Screening Tool for Diverse Environments
- arxiv url: http://arxiv.org/abs/2503.22773v1
- Date: Fri, 28 Mar 2025 05:47:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:33:18.932170
- Title: Congenital Heart Disease Classification Using Phonocardiograms: A Scalable Screening Tool for Diverse Environments
- Title(参考訳): 心電図を用いた先天性心疾患の分類 : 多様な環境に対するスケーラブルなスクリーニングツール
- Authors: Abdul Jabbar, Ethan Grooby, Jack Crozier, Alexander Gallon, Vivian Pham, Khawza I Ahmad, Md Hassanuzzaman, Raqibul Mostafa, Ahsan H. Khandoker, Faezeh Marzbanrad,
- Abstract要約: 先天性心疾患(CHD)は早期発見を必要とする重要な疾患である。
本研究では, 心電図(PCG)信号を用いたCHD検出のための深層学習モデルを提案する。
バングラデシュの一次データセットを含むいくつかのデータセットで、我々のモデルを評価した。
- 参考スコア(独自算出の注目度): 34.10187730651477
- License:
- Abstract: Congenital heart disease (CHD) is a critical condition that demands early detection, particularly in infancy and childhood. This study presents a deep learning model designed to detect CHD using phonocardiogram (PCG) signals, with a focus on its application in global health. We evaluated our model on several datasets, including the primary dataset from Bangladesh, achieving a high accuracy of 94.1%, sensitivity of 92.7%, specificity of 96.3%. The model also demonstrated robust performance on the public PhysioNet Challenge 2022 and 2016 datasets, underscoring its generalizability to diverse populations and data sources. We assessed the performance of the algorithm for single and multiple auscultation sites on the chest, demonstrating that the model maintains over 85% accuracy even when using a single location. Furthermore, our algorithm was able to achieve an accuracy of 80% on low-quality recordings, which cardiologists deemed non-diagnostic. This research suggests that an AI- driven digital stethoscope could serve as a cost-effective screening tool for CHD in resource-limited settings, enhancing clinical decision support and ultimately improving patient outcomes.
- Abstract(参考訳): 先天性心疾患(英: Congenital heart disease,CHD)は、特に幼児期および小児期において早期発見を必要とする重要な疾患である。
本研究では, 心電図(PCG)信号を用いたCHD検出のための深層学習モデルを提案する。
バングラデシュの一次データセットを含むいくつかのデータセットを用いて、我々のモデルを評価し、94.1%の精度、92.7%の感度、96.3%の特異性を達成した。
このモデルは、2022年と2016年の公開PhystoNet Challengeのデータセットでも堅牢なパフォーマンスを示し、多様な人口やデータソースへの一般化性を強調した。
胸部における単回および複数回の聴診サイトに対するアルゴリズムの性能評価を行い, 単一位置を用いた場合においても85%以上の精度が維持可能であることを示した。
さらに,本アルゴリズムは低品質記録の80%の精度を達成し,心臓科医は診断不能とみなした。
この研究は、AI駆動型デジタル聴診器が、リソース制限設定におけるCHDの費用対効果のスクリーニングツールとして機能し、臨床診断支援を強化し、最終的には患者の結果を改善する可能性を示唆している。
関連論文リスト
- Fast-staged CNN Model for Accurate pulmonary diseases and Lung cancer detection [0.0]
本研究は, 肺がん, 特に肺結節の検出を目的とした深層学習モデルと, 胸部X線写真を用いた8つの肺病理組織について検討した。
アンサンブル法とトランスファーラーニングを利用した2段階分類システムを用いて,最初のトリアージ画像を正規あるいは異常に分類する。
このモデルでは、最高の性能の精度は77%、感度は0.713、特異度は0.776、AUCスコアは0.888である。
論文 参考訳(メタデータ) (2024-12-16T11:47:07Z) - Development and prospective validation of a prostate cancer detection, grading, and workflow optimization system at an academic medical center [1.9729379339863824]
がん検出, グレーディング, IHC 注文症例のスクリーニングモデルを開発した。
タスク固有前立腺モデルの性能を汎用基礎モデルと比較した。
癌検出におけるタスク特異的モデルと基礎モデルの間に統計的に有意な差は認められなかった。
論文 参考訳(メタデータ) (2024-10-31T05:29:18Z) - Anomaly Detection in Electrocardiograms: Advancing Clinical Diagnosis Through Self-Supervised Learning [32.37717219026923]
既存のシステムは、心臓のマクロ/ミクロ構造における深刻な生命を脅かす問題や変化の前兆となる稀な心臓異常を見逃すことがしばしばある。
本研究は自己監督型異常検出(AD)に焦点をあて,異常を示す偏差を認識するために,正常心電図のみを訓練する。
本稿では,心電図の異常を自律的に検出し,局所化するために,正常心電図の膨大なデータセットを利用する,心電図ADのための新しい自己教師型学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-07T12:15:53Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
460胸部X線で冠状動脈カルシウム(CAC)スコアを予測する深層学習アルゴリズムを開発した。
AICACモデルの診断精度は, 曲線下領域(AUC)で評価された。
論文 参考訳(メタデータ) (2024-03-27T16:56:14Z) - ECG-Based Patient Identification: A Comprehensive Evaluation Across Health and Activity Conditions [0.0]
本稿では,心電図信号を用いた医療システムにおける患者識別のための新しいアプローチを提案する。
畳み込みニューラルネットワーク(CNN)は、心電図信号から派生した特定のタイプの画像である心電図に基づいてユーザを分類するために使用される。
提案した同定システムは複数のデータベースで評価され、健常者では99.84%、循環器疾患では97.09%、健常者および不整脈患者では97.89%である。
論文 参考訳(メタデータ) (2023-02-13T17:14:55Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
本稿では,Intelligent Sight and Sound (ISS) 臨床試験の一環として収集された,最初の慢性ガン痛データセットを紹介する。
これまで収集されたデータは29の患者、509のスマートフォンビデオ、189,999のフレーム、そして自己報告された感情と活動の痛みのスコアから成っている。
静的画像とマルチモーダルデータを用いて、自己報告された痛みレベルを予測する。
論文 参考訳(メタデータ) (2022-04-07T22:14:37Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
本研究は,243名の非侵襲的特徴(年齢,性別,左室容積率,HRV15)を用いて,一連のANNの訓練と評価を行った。
最高の結果は、7つの入力パラメータと7つの隠れノードを使用して、トレーニングと検証データセットに対して98.9%と82%の精度で得られた。
論文 参考訳(メタデータ) (2020-10-29T19:14:41Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。