論文の概要: Evolutionary Deep Reinforcement Learning for Dynamic Slice Management in
O-RAN
- arxiv url: http://arxiv.org/abs/2208.14394v1
- Date: Tue, 30 Aug 2022 17:00:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-31 12:26:37.926279
- Title: Evolutionary Deep Reinforcement Learning for Dynamic Slice Management in
O-RAN
- Title(参考訳): O-RANにおける動的スライス管理のための進化的深部強化学習
- Authors: Fatemeh Lotfi, Omid Semiari, Fatemeh Afghah
- Abstract要約: 新しいオープン無線アクセスネットワーク(O-RAN)は、フレキシブルな設計、分離された仮想およびプログラマブルなコンポーネント、インテリジェントクローズループ制御などの特徴を区別する。
O-RANスライシングは、状況の変化に直面したネットワーク品質保証(QoS)のための重要な戦略として検討されている。
本稿では,ネットワークスライスを知的に管理できる新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 11.464582983164991
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The next-generation wireless networks are required to satisfy a variety of
services and criteria concurrently. To address upcoming strict criteria, a new
open radio access network (O-RAN) with distinguishing features such as flexible
design, disaggregated virtual and programmable components, and intelligent
closed-loop control was developed. O-RAN slicing is being investigated as a
critical strategy for ensuring network quality of service (QoS) in the face of
changing circumstances. However, distinct network slices must be dynamically
controlled to avoid service level agreement (SLA) variation caused by rapid
changes in the environment. Therefore, this paper introduces a novel framework
able to manage the network slices through provisioned resources intelligently.
Due to diverse heterogeneous environments, intelligent machine learning
approaches require sufficient exploration to handle the harshest situations in
a wireless network and accelerate convergence. To solve this problem, a new
solution is proposed based on evolutionary-based deep reinforcement learning
(EDRL) to accelerate and optimize the slice management learning process in the
radio access network's (RAN) intelligent controller (RIC) modules. To this end,
the O-RAN slicing is represented as a Markov decision process (MDP) which is
then solved optimally for resource allocation to meet service demand using the
EDRL approach. In terms of reaching service demands, simulation results show
that the proposed approach outperforms the DRL baseline by 62.2%.
- Abstract(参考訳): 次世代無線ネットワークは、様々なサービスと基準を同時に満たす必要がある。
今後の厳格な基準に対処するため、フレキシブルデザイン、分散仮想およびプログラマブルコンポーネント、インテリジェントなクローズドループ制御などの特徴を区別する新しいオープン無線アクセスネットワーク(o-ran)が開発された。
O-RANスライシングは、状況の変化に直面したネットワーク品質保証(QoS)のための重要な戦略として検討されている。
しかし、異なるネットワークスライスを動的に制御し、環境の急激な変化に起因するサービスレベル合意(SLA)の変動を避ける必要がある。
そこで本稿では,プロビジョニングされたリソースを通じてネットワークスライスをインテリジェントに管理できる新しいフレームワークを提案する。
多様な異種環境のため、インテリジェントな機械学習アプローチでは、無線ネットワークにおける最も厳しい状況に対処し、収束を加速するために十分な探索が必要である。
この問題を解決するために,無線アクセスネットワーク(RAN)インテリジェントコントローラ(RIC)モジュールにおけるスライス管理学習プロセスの高速化と最適化を目的として,進化に基づく深層強化学習(EDRL)に基づく新しい手法を提案する。
この目的のために、O-RANスライシングはマルコフ決定プロセス(MDP)として表現され、EDRLアプローチを使用してサービス需要を満たすためにリソース割り当てを最適に解決する。
サービス要求の達成に関して、シミュレーションの結果、提案手法はDRLベースラインを62.2%上回る結果となった。
関連論文リスト
- DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
本稿では、無線通信ネットワークの異なる状態変化に対応するために、カスタマイズされた無線ネットワークインテント(WNI-G)モデルを提案する。
大規模シミュレーションにより、動的通信システムにおけるスペクトル効率と従来のDRLモデルの変動の安定性が向上する。
論文 参考訳(メタデータ) (2024-10-18T14:04:38Z) - Meta Reinforcement Learning Approach for Adaptive Resource Optimization in O-RAN [6.326120268549892]
Open Radio Access Network (O-RAN) は、前例のない効率性と適応性を持つ現代のネットワークの変動要求に対処する。
本稿では,モデルに依存しないメタラーニング(MAML)にインスパイアされたメタ深層強化学習(Meta-DRL)戦略を提案する。
論文 参考訳(メタデータ) (2024-09-30T23:04:30Z) - Open RAN LSTM Traffic Prediction and Slice Management using Deep
Reinforcement Learning [7.473473066047965]
本稿では,分散深部強化学習(DDRL)を用いたORANスライシングの新しい手法を提案する。
シミュレーションの結果,ネットワーク性能が著しく向上し,特に違反の低減が図られた。
これは、動的xAppの一部として、予測rAppと分散アクターの情報を共同で使用することの重要性を強調している。
論文 参考訳(メタデータ) (2024-01-12T22:43:07Z) - Attention-based Open RAN Slice Management using Deep Reinforcement
Learning [6.177038245239758]
本稿では,O-RAN分散化モジュールと分散エージェント協調を利用した,革新的アテンションベースディープRL(ADRL)技術を提案する。
シミュレーションの結果,他のDRLベースライン法と比較してネットワーク性能が大幅に向上した。
論文 参考訳(メタデータ) (2023-06-15T20:37:19Z) - Intelligent O-RAN Traffic Steering for URLLC Through Deep Reinforcement
Learning [3.59419219139168]
Open RAN(O-RAN)は、インテリジェントなRANアーキテクチャを構築するための有望なパラダイムである。
本稿では,機械学習(ML)に基づくトラフィックステアリング(TS)方式を提案する。
我々のソリューションは、O-RANのxAppsとして提供される従来のリアクティブTSアプローチに対して評価され、デプロイされたすべてのSFC間で平均15.81パーセントの待ち行列が減少することを示している。
論文 参考訳(メタデータ) (2023-03-03T14:34:25Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - State-Augmented Learnable Algorithms for Resource Management in Wireless
Networks [124.89036526192268]
本稿では,無線ネットワークにおける資源管理問題を解決するためのステート拡張アルゴリズムを提案する。
提案アルゴリズムは, RRM決定を可能, ほぼ最適に行うことができることを示す。
論文 参考訳(メタデータ) (2022-07-05T18:02:54Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
Reconfigurable Intelligent Surfaces(RIS)の新たな技術は、スマート無線環境の実現手段として準備されている。
RISは、無線媒体上の電磁信号の伝搬を動的に制御するための、高度にスケーラブルで低コストで、ハードウェア効率が高く、ほぼエネルギーニュートラルなソリューションを提供する。
このような再構成可能な無線環境におけるRISの密配置に関する大きな課題の1つは、複数の準曲面の効率的な構成である。
論文 参考訳(メタデータ) (2022-05-08T06:21:33Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
複数のエージェントが無線ネットワーク上で協調できるコラボレーティブディープ強化学習(CDRL)アルゴリズムは有望なアプローチである。
本稿では,リソース制約のある無線セルネットワーク上で,意味的にリンクされたDRLタスクを持つ未学習エージェントのグループを効率的に協調させる,新しい意味認識型CDRL手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:24:47Z) - Deep Reinforcement Learning for Adaptive Network Slicing in 5G for
Intelligent Vehicular Systems and Smart Cities [19.723551683930776]
エッジコントローラ(EC)と協調したフォグノードのクラスタ(FN)に基づくネットワークスライシングモデルを開発する。
クラスタ内の各サービスリクエストに対して、ECは、どのFNがタスクを実行し、エッジでローカルにリクエストをサーブするか、あるいはタスクを拒否し、それをクラウドに参照するかを決定する。
本稿では,最適スライシングポリシーを適応的に学習する深層強化学習(DRL)ソリューションを提案する。
論文 参考訳(メタデータ) (2020-10-19T23:30:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。