論文の概要: Intelligent O-RAN Traffic Steering for URLLC Through Deep Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2303.01960v1
- Date: Fri, 3 Mar 2023 14:34:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-06 14:49:10.322602
- Title: Intelligent O-RAN Traffic Steering for URLLC Through Deep Reinforcement
Learning
- Title(参考訳): 深部強化学習によるURLLCのためのインテリジェントO-RANトラヒックステアリング
- Authors: Ibrahim Tamim, Sam Aleyadeh, Abdallah Shami
- Abstract要約: Open RAN(O-RAN)は、インテリジェントなRANアーキテクチャを構築するための有望なパラダイムである。
本稿では,機械学習(ML)に基づくトラフィックステアリング(TS)方式を提案する。
我々のソリューションは、O-RANのxAppsとして提供される従来のリアクティブTSアプローチに対して評価され、デプロイされたすべてのSFC間で平均15.81パーセントの待ち行列が減少することを示している。
- 参考スコア(独自算出の注目度): 3.59419219139168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of Next-Generation Networks is to improve upon the current
networking paradigm, especially in providing higher data rates, near-real-time
latencies, and near-perfect quality of service. However, existing radio access
network (RAN) architectures lack sufficient flexibility and intelligence to
meet those demands. Open RAN (O-RAN) is a promising paradigm for building a
virtualized and intelligent RAN architecture. This paper presents a Machine
Learning (ML)-based Traffic Steering (TS) scheme to predict network congestion
and then proactively steer O-RAN traffic to avoid it and reduce the expected
queuing delay. To achieve this, we propose an optimized setup focusing on
safeguarding both latency and reliability to serve URLLC applications. The
proposed solution consists of a two-tiered ML strategy based on Naive Bayes
Classifier and deep Q-learning. Our solution is evaluated against traditional
reactive TS approaches that are offered as xApps in O-RAN and shows an average
of 15.81 percent decrease in queuing delay across all deployed SFCs.
- Abstract(参考訳): Next-Generation Networksの目標は、特に高いデータレート、ほぼリアルタイムレイテンシ、ほぼ完璧なサービス品質の提供において、現在のネットワークパラダイムを改善することである。
しかし、既存の無線アクセスネットワーク(RAN)アーキテクチャは、これらの要求を満たすのに十分な柔軟性と知性を持っていない。
Open RAN(O-RAN)は、仮想化されたインテリジェントなRANアーキテクチャを構築するための有望なパラダイムである。
本稿では、機械学習に基づくトラフィックステアリング(TS)方式を提案し、ネットワークの混雑を予測し、O-RANトラフィックを積極的に操り、その回避と待ち行列遅延の低減を図る。
そこで我々は,urllcアプリケーションを実現するために,レイテンシと信頼性の両立に重点を置いた最適化設定を提案する。
提案手法は,naive bayes分類器とdeep q-learningに基づく2層ml戦略からなる。
我々のソリューションは、O-RANのxAppsとして提供される従来のリアクティブTSアプローチに対して評価され、デプロイされたすべてのSFC間で平均15.81パーセントの待ち行列が減少している。
関連論文リスト
- Safe and Accelerated Deep Reinforcement Learning-based O-RAN Slicing: A
Hybrid Transfer Learning Approach [20.344810727033327]
我々は,DRLをベースとしたO-RANスライシングにおいて,安全かつ迅速な収束を実現するためのハイブリッドTL支援手法を提案し,設計する。
提案されたハイブリッドアプローチは、少なくとも7.7%と20.7%は、平均的な初期報酬値と収束シナリオの割合を改善している。
論文 参考訳(メタデータ) (2023-09-13T18:58:34Z) - How Does Forecasting Affect the Convergence of DRL Techniques in O-RAN
Slicing? [20.344810727033327]
本稿では,DRLの収束性を高めるため,新しい予測支援型DRL手法とそのO-RAN実運用ワークフローを提案する。
提案手法では, 平均初期報酬値, 収束率, 収束シナリオ数において最大22.8%, 86.3%, 300%の改善が見られた。
論文 参考訳(メタデータ) (2023-09-01T14:30:04Z) - Sparsity-Aware Intelligent Massive Random Access Control in Open RAN: A
Reinforcement Learning Based Approach [61.74489383629319]
新たなOpen Radio Access Network(O-RAN)におけるデバイスの大量ランダムアクセスは、アクセス制御と管理に大きな課題をもたらします。
閉ループアクセス制御の強化学習(RL)支援方式を提案する。
深部RL支援SAUDは、連続的かつ高次元の状態と行動空間を持つ複雑な環境を解決するために提案されている。
論文 参考訳(メタデータ) (2023-03-05T12:25:49Z) - Guaranteed Dynamic Scheduling of Ultra-Reliable Low-Latency Traffic via
Conformal Prediction [72.59079526765487]
アップリンクにおける超信頼性・低遅延トラフィック(URLLC)の動的スケジューリングは、既存のサービスの効率を大幅に向上させることができる。
主な課題は、URLLCパケット生成のプロセスにおける不確実性である。
本稿では,URLLC トラフィック予測器の品質に関わらず,信頼性と遅延を保証した新しい URLLC パケットスケジューラを提案する。
論文 参考訳(メタデータ) (2023-02-15T14:09:55Z) - Network-Aided Intelligent Traffic Steering in 6G O-RAN: A Multi-Layer
Optimization Framework [47.57576667752444]
オープンRAN(O-RAN)におけるインテリジェントステアリングアプリケーションを実現するために,フロースプリット分布,渋滞制御,スケジューリング(JFCS)を共同で最適化する。
i) 適切な無線ユニットへのトラフィックを効率よく、適応的に誘導する新しいJFCSフレームワークを提案し、i) 強化学習、内近似、二項探索に基づく低複雑さアルゴリズムを開発し、異なる時間スケールでJFCS問題を効果的に解決し、iv) 厳密な理論的性能結果を分析し、遅延とユーティリティ最適化のトレードオフを改善するためのスケーリング係数が存在することを示す。
論文 参考訳(メタデータ) (2023-02-06T11:37:06Z) - Evolutionary Deep Reinforcement Learning for Dynamic Slice Management in
O-RAN [11.464582983164991]
新しいオープン無線アクセスネットワーク(O-RAN)は、フレキシブルな設計、分離された仮想およびプログラマブルなコンポーネント、インテリジェントクローズループ制御などの特徴を区別する。
O-RANスライシングは、状況の変化に直面したネットワーク品質保証(QoS)のための重要な戦略として検討されている。
本稿では,ネットワークスライスを知的に管理できる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-30T17:00:53Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Deep Reinforcement Learning for Adaptive Network Slicing in 5G for
Intelligent Vehicular Systems and Smart Cities [19.723551683930776]
エッジコントローラ(EC)と協調したフォグノードのクラスタ(FN)に基づくネットワークスライシングモデルを開発する。
クラスタ内の各サービスリクエストに対して、ECは、どのFNがタスクを実行し、エッジでローカルにリクエストをサーブするか、あるいはタスクを拒否し、それをクラウドに参照するかを決定する。
本稿では,最適スライシングポリシーを適応的に学習する深層強化学習(DRL)ソリューションを提案する。
論文 参考訳(メタデータ) (2020-10-19T23:30:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。