論文の概要: A Learning-Based 3D EIT Image Reconstruction Method
- arxiv url: http://arxiv.org/abs/2208.14449v1
- Date: Tue, 30 Aug 2022 12:00:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-01 13:15:14.456946
- Title: A Learning-Based 3D EIT Image Reconstruction Method
- Title(参考訳): 学習型3次元EIT画像再構成法
- Authors: Zhaoguang Yi, Zhou Chen, and Yunjie Yang
- Abstract要約: 本稿では,ニューロンネットワーク(TN-Net)を用いた3次元EIT画像再構成のための学習的アプローチを提案する。
シミュレーションおよび実験結果から,TN-Netの性能と一般化能力は,一般的な3次元EIT画像再構成アルゴリズムと比較して優れていた。
- 参考スコア(独自算出の注目度): 3.2116198597240846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has been widely employed to solve the Electrical Impedance
Tomography (EIT) image reconstruction problem. Most existing physical
model-based and learning-based approaches focus on 2D EIT image reconstruction.
However, when they are directly extended to the 3D domain, the reconstruction
performance in terms of image quality and noise robustness is hardly guaranteed
mainly due to the significant increase in dimensionality. This paper presents a
learning-based approach for 3D EIT image reconstruction, which is named
Transposed convolution with Neurons Network (TN-Net). Simulation and
experimental results show the superior performance and generalization ability
of TN-Net compared with prevailing 3D EIT image reconstruction algorithms.
- Abstract(参考訳): 深層学習は電気インピーダンストモグラフィ(EIT)画像再構成問題を解決するために広く用いられている。
既存の物理モデルベースおよび学習ベースアプローチのほとんどは、2D EIT画像再構成に焦点を当てている。
しかし, 直接3次元領域に拡張した場合, 画像品質, ノイズ堅牢性の面での再構成性能は, 主に寸法の著しい増加により保証されることがほとんどない。
本稿では,ニューロンネットワーク(TN-Net)を用いた3D EIT画像再構成のための学習的アプローチを提案する。
シミュレーションおよび実験結果から,TN-Netの性能と一般化能力は,一般的な3次元EIT画像再構成アルゴリズムと比較して優れていた。
関連論文リスト
- Frequency-based View Selection in Gaussian Splatting Reconstruction [9.603843571051744]
入力画像の少ない3次元ガウススプラッティング再構成を行うためのアクティブビュー選択の問題について検討する。
周波数領域の潜在的なビューをランク付けすることで、新しい視点の潜在的な情報ゲインを効果的に推定することができる。
提案手法は,画像による3次元再構成を効果的に行う可能性を示し,ビュー選択の最先端性を実現する。
論文 参考訳(メタデータ) (2024-09-24T21:44:26Z) - GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
マルチビュー画像から3次元メッシュを再構成する手法を提案する。
提案手法は, 変圧器を用いたトリプレーンジェネレータとニューラルレージアンスフィールド(NeRF)モデルを用いた大規模再構成モデルから着想を得たものである。
論文 参考訳(メタデータ) (2024-06-09T05:19:24Z) - SADIR: Shape-Aware Diffusion Models for 3D Image Reconstruction [2.2954246824369218]
限られた2次元画像からの3次元画像再構成は、コンピュータビジョンと画像解析における長年にわたる課題である。
本研究では,これらの問題に対処する3次元画像再構成のための拡散モデルに基づく形状認識ネットワークSADIRを提案する。
論文 参考訳(メタデータ) (2023-09-06T19:30:22Z) - End-to-End Multi-View Structure-from-Motion with Hypercorrelation
Volumes [7.99536002595393]
この問題に対処するために深層学習技術が提案されている。
我々は現在最先端の2次元構造であるSfM(SfM)のアプローチを改善している。
一般的なマルチビューのケースに拡張し、複雑なベンチマークデータセットDTUで評価する。
論文 参考訳(メタデータ) (2022-09-14T20:58:44Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
シングルビュー3Dメッシュ再構成は、シングルビューRGB画像から3D形状を復元することを目的とした、基本的なコンピュータビジョンタスクである。
本稿では,一視点3Dメッシュ再構成に取り組み,未知のカテゴリのモデル一般化について検討する。
我々は、再構築におけるカテゴリ境界を断ち切るために、エンドツーエンドの2段階ネットワークであるGenMeshを提案する。
論文 参考訳(メタデータ) (2022-08-04T14:13:35Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
そこで我々は,インターネット写真コレクションから効率よく高精度な表面再構成を実現する新しい手法を提案する。
そこで本研究では,これらのシーンにおける再構成性能を評価するための新しいベンチマークとプロトコルを提案する。
論文 参考訳(メタデータ) (2022-05-25T17:59:53Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
画像再構成に有効な先行画像として, 奥行き画像が導入された。
その印象的な再建性にもかかわらず、学習技術や伝統的な再建技術と比べてアプローチは遅い。
計算課題に対処する2段階の学習パラダイムを開発する。
論文 参考訳(メタデータ) (2021-11-23T15:08:26Z) - Translational Symmetry-Aware Facade Parsing for 3D Building
Reconstruction [11.263458202880038]
本稿では,深部ニューラルネットワーク改善のための新しい翻訳対称性に基づくアプローチを提案する。
本研究では,単一段ネットワークにおけるアンカーフリー検出を融合させる新しい手法を提案する。
我々はBlenderのような市販のレンダリングエンジンを使用して、手続きモデルを用いて現実的な高品質な3Dモデルを再構築する。
論文 参考訳(メタデータ) (2021-06-02T03:10:51Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
我々は、GAN(Generative Adversarial Networks)とDCNN(Deep Convolutional Neural Networks)の力を利用して、単一画像から顔のテクスチャと形状を再構築する。
3次元顔再構成を保存したフォトリアリスティックでアイデンティティに優れた結果を示し, 初めて, 高精度な顔テクスチャ再構成を実現する。
論文 参考訳(メタデータ) (2021-05-16T16:35:44Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。