論文の概要: Segmentation-guided Domain Adaptation and Data Harmonization of
Multi-device Retinal Optical Coherence Tomography using Cycle-Consistent
Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2208.14635v1
- Date: Wed, 31 Aug 2022 05:06:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-01 13:14:34.282820
- Title: Segmentation-guided Domain Adaptation and Data Harmonization of
Multi-device Retinal Optical Coherence Tomography using Cycle-Consistent
Generative Adversarial Networks
- Title(参考訳): サイクル一貫性生成対向ネットワークを用いた多デバイス網膜光コヒーレンストモグラフィーの分割誘導領域適応とデータ調和
- Authors: Shuo Chen and Da Ma and Sieun Lee and Timothy T.L. Yu and Gavin Xu and
Donghuan Lu and Karteek Popuri and Myeong Jin Ju and Marinko V. Sarunic and
Mirza Faisal Beg
- Abstract要約: 本稿では,複数のデバイスからの画像を単一画像領域に適応させるセグメント化誘導型領域適応手法を提案する。
来るべき新しいデータセットに対する手動ラベリングの時間消費と、既存のネットワークの再トレーニングを回避する。
- 参考スコア(独自算出の注目度): 2.968191199408213
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Optical Coherence Tomography(OCT) is a non-invasive technique capturing
cross-sectional area of the retina in micro-meter resolutions. It has been
widely used as a auxiliary imaging reference to detect eye-related pathology
and predict longitudinal progression of the disease characteristics. Retina
layer segmentation is one of the crucial feature extraction techniques, where
the variations of retinal layer thicknesses and the retinal layer deformation
due to the presence of the fluid are highly correlated with multiple epidemic
eye diseases like Diabetic Retinopathy(DR) and Age-related Macular Degeneration
(AMD). However, these images are acquired from different devices, which have
different intensity distribution, or in other words, belong to different
imaging domains. This paper proposes a segmentation-guided domain-adaptation
method to adapt images from multiple devices into single image domain, where
the state-of-art pre-trained segmentation model is available. It avoids the
time consumption of manual labelling for the upcoming new dataset and the
re-training of the existing network. The semantic consistency and global
feature consistency of the network will minimize the hallucination effect that
many researchers reported regarding Cycle-Consistent Generative Adversarial
Networks(CycleGAN) architecture.
- Abstract(参考訳): 光コヒーレンス・トモグラフィ(OCT)は、微小メートル分解能で網膜の断面領域を捉える非侵襲的手法である。
視線関連疾患の検出と,疾患の特徴の経時的進行を予測する補助画像基準として広く用いられている。
網膜層セグメンテーションは、網膜層の厚さの変化と流体の存在による網膜層の変形が、糖尿病網膜症(DR)や加齢に伴う黄斑変性(AMD)などの多発性眼疾患と高い相関関係を持つ重要な特徴抽出手法の1つである。
しかし、これらの画像は異なる強度分布を持つ異なるデバイスから取得され、言い換えれば異なる画像領域に属する。
本稿では,複数のデバイスからの画像を単一の画像領域に適応させるためのセグメンテーション誘導型ドメイン適応手法を提案する。
来るべき新しいデータセットに対する手動ラベリングの時間消費と、既存のネットワークの再トレーニングを回避する。
ネットワークのセマンティック一貫性とグローバルな特徴一貫性は、多くの研究者がCycleGAN(Cycle-Consistent Generative Adversarial Networks)アーキテクチャについて報告した幻覚効果を最小化する。
関連論文リスト
- Progressive Retinal Image Registration via Global and Local Deformable Transformations [49.032894312826244]
我々はHybridRetinaと呼ばれるハイブリッド登録フレームワークを提案する。
キーポイント検出器とGAMorphと呼ばれる変形ネットワークを用いて、大域的な変換と局所的な変形可能な変換を推定する。
FIREとFLoRI21という2つの広く使われているデータセットの実験により、提案したHybridRetinaは最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-09-02T08:43:50Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation [3.57686754209902]
OCTガイド下治療には網膜液の定量化が必要である。
RetiFluidNetと呼ばれる新しい畳み込みニューラルアーキテクチャは、多クラス網膜流体セグメンテーションのために提案されている。
モデルは、テクスチャ、コンテキスト、エッジといった特徴の階層的な表現学習の恩恵を受ける。
論文 参考訳(メタデータ) (2022-09-26T07:18:00Z) - SD-LayerNet: Semi-supervised retinal layer segmentation in OCT using
disentangled representation with anatomical priors [4.2663199451998475]
網膜層セグメンテーションタスクに半教師付きパラダイムを導入する。
特に、表面位置回帰をピクセル単位で構造化されたセグメンテーションに変換するために、新しい完全微分可能なアプローチが用いられる。
並行して,ラベル付きデータの限られた量が利用できる場合に,ネットワークトレーニングを改善するための解剖学的事前セットを提案する。
論文 参考訳(メタデータ) (2022-07-01T14:30:59Z) - MultiPathGAN: Structure Preserving Stain Normalization using
Unsupervised Multi-domain Adversarial Network with Perception Loss [10.043946236248392]
病理組織学は、病気の診断に顕微鏡組織像の分析に頼っている。
我々は,複数のデータ取得領域にまたがって,スライド画像全体を翻訳(正規化)する,教師なしの敵ネットワークを導入する。
論文 参考訳(メタデータ) (2022-04-20T20:48:17Z) - A Keypoint Detection and Description Network Based on the Vessel
Structure for Multi-Modal Retinal Image Registration [0.0]
異なるモダリティや取得時間を持つ複数の画像は、網膜疾患の診断のためにしばしば分析される。
本手法は、畳み込みニューラルネットワークを用いて、多モード網膜画像の血管構造の特徴を抽出する。
論文 参考訳(メタデータ) (2022-01-06T20:43:35Z) - Segmentation-Renormalized Deep Feature Modulation for Unpaired Image
Harmonization [0.43012765978447565]
サイクル一貫性のある生成共役ネットワークは、ソースとターゲットドメイン間のイメージセットの調和に使われてきた。
これらの手法は、不安定性、コントラストの逆転、病理の難治性操作、および実際の医用画像における信頼性を制限したステガノグラフィーマッピングの傾向が強い。
解剖学的レイアウトを維持しながらスキャナ間の調和を低減するセグメンテーション正規化画像翻訳フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-11T23:53:51Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
我々は、Synergistic Image and Feature Alignment (SIFA)と名付けられた新しい教師なしドメイン適応フレームワークを提案する。
提案するSIFAは、画像と特徴の両方の観点から、ドメインの相乗的アライメントを行う。
2つの異なるタスクに対する実験結果から,SIFA法は未ラベル対象画像のセグメンテーション性能を向上させるのに有効であることが示された。
論文 参考訳(メタデータ) (2020-02-06T13:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。