Quantum convolutional neural network for classical data classification
- URL: http://arxiv.org/abs/2108.00661v2
- Date: Fri, 11 Feb 2022 10:34:22 GMT
- Title: Quantum convolutional neural network for classical data classification
- Authors: Tak Hur, Leeseok Kim, Daniel K. Park
- Abstract summary: We benchmark fully parameterized quantum convolutional neural networks (QCNNs) for classical data classification.
We propose a quantum neural network model inspired by CNN that only uses two-qubit interactions throughout the entire algorithm.
- Score: 0.8057006406834467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advance of quantum machine learning, several proposals for the
quantum-analogue of convolutional neural network (CNN) have emerged. In this
work, we benchmark fully parameterized quantum convolutional neural networks
(QCNNs) for classical data classification. In particular, we propose a quantum
neural network model inspired by CNN that only uses two-qubit interactions
throughout the entire algorithm. We investigate the performance of various QCNN
models differentiated by structures of parameterized quantum circuits, quantum
data encoding methods, classical data pre-processing methods, cost functions
and optimizers on MNIST and Fashion MNIST datasets. In most instances, QCNN
achieved excellent classification accuracy despite having a small number of
free parameters. The QCNN models performed noticeably better than CNN models
under the similar training conditions. Since the QCNN algorithm presented in
this work utilizes fully parameterized and shallow-depth quantum circuits, it
is suitable for Noisy Intermediate-Scale Quantum (NISQ) devices.
Related papers
- A Quantum Convolutional Neural Network Approach for Object Detection and
Classification [0.0]
The time and accuracy of QCNNs are compared with classical CNNs and ANN models under different conditions.
The analysis shows that QCNNs have the potential to outperform both classical CNNs and ANN models in terms of accuracy and efficiency for certain applications.
arXiv Detail & Related papers (2023-07-17T02:38:04Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
This paper investigates how training of quantum neural network (QNNs) can be done using quantum optimization algorithms.
In this paper, a QNN structure is made where a variational parameterized circuit is incorporated as an input layer named as Variational Quantum Neural Network (VQNNs)
VQNNs is experimented with MNIST digit recognition (less complex) and crack image classification datasets which converge the computation in lesser time than QNN with decent training accuracy.
arXiv Detail & Related papers (2023-03-10T11:24:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Classical-to-quantum convolutional neural network transfer learning [1.9336815376402723]
Machine learning using quantum convolutional neural networks (QCNNs) has demonstrated success in both quantum and classical data classification.
We propose transfer learning as an effective strategy for utilizing small QCNNs in the noisy intermediate-scale quantum era.
arXiv Detail & Related papers (2022-08-31T09:15:37Z) - Quantum-inspired Complex Convolutional Neural Networks [17.65730040410185]
We improve the quantum-inspired neurons by exploiting the complex-valued weights which have richer representational capacity and better non-linearity.
We draw the models of quantum-inspired convolutional neural networks (QICNNs) capable of processing high-dimensional data.
The performance of classification accuracy of the five QICNNs are tested on the MNIST and CIFAR-10 datasets.
arXiv Detail & Related papers (2021-10-31T03:10:48Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Branching Quantum Convolutional Neural Networks [0.0]
Small-scale quantum computers are already showing potential gains in learning tasks on large quantum and very large classical data sets.
We present a generalization of QCNN, the branching quantum convolutional neural network, or bQCNN, with substantially higher expressibility.
arXiv Detail & Related papers (2020-12-28T19:00:03Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
We build upon a quantum convolutional neural network (QCNN) composed of a quantum circuit encoder for feature extraction.
An input speech is first up-streamed to a quantum computing server to extract Mel-spectrogram.
The corresponding convolutional features are encoded using a quantum circuit algorithm with random parameters.
The encoded features are then down-streamed to the local RNN model for the final recognition.
arXiv Detail & Related papers (2020-10-26T03:36:01Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.