Learning Automata-Based Complex Event Patterns in Answer Set Programming
- URL: http://arxiv.org/abs/2208.14820v1
- Date: Wed, 31 Aug 2022 12:40:44 GMT
- Title: Learning Automata-Based Complex Event Patterns in Answer Set Programming
- Authors: Nikos Katzouris and Georgios Paliouras
- Abstract summary: We propose a family of automata where the transition-enabling conditions are defined by Answer Set Programming (ASP) rules.
We present such a learning approach in ASP and an incremental version thereof that trades optimality for efficiency and is capable to scale to large datasets.
We evaluate our approach on two CER datasets and compare it to state-of-the-art automata learning techniques, demonstrating empirically a superior performance.
- Score: 0.30458514384586405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Complex Event Recognition and Forecasting (CER/F) techniques attempt to
detect, or even forecast ahead of time, event occurrences in streaming input
using predefined event patterns. Such patterns are not always known in advance,
or they frequently change over time, making machine learning techniques,
capable of extracting such patterns from data, highly desirable in CER/F. Since
many CER/F systems use symbolic automata to represent such patterns, we propose
a family of such automata where the transition-enabling conditions are defined
by Answer Set Programming (ASP) rules, and which, thanks to the strong
connections of ASP to symbolic learning, are directly learnable from data. We
present such a learning approach in ASP and an incremental version thereof that
trades optimality for efficiency and is capable to scale to large datasets. We
evaluate our approach on two CER datasets and compare it to state-of-the-art
automata learning techniques, demonstrating empirically a superior performance,
both in terms of predictive accuracy and scalability.
Related papers
- Self-Supervised Representation Learning from Temporal Ordering of
Automated Driving Sequences [49.91741677556553]
We propose TempO, a temporal ordering pretext task for pre-training region-level feature representations for perception tasks.
We embed each frame by an unordered set of proposal feature vectors, a representation that is natural for object detection or tracking systems.
Extensive evaluations on the BDD100K, nuImages, and MOT17 datasets show that our TempO pre-training approach outperforms single-frame self-supervised learning methods.
arXiv Detail & Related papers (2023-02-17T18:18:27Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Robust Event Classification Using Imperfect Real-world PMU Data [58.26737360525643]
We study robust event classification using imperfect real-world phasor measurement unit (PMU) data.
We develop a novel machine learning framework for training robust event classifiers.
arXiv Detail & Related papers (2021-10-19T17:41:43Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
Complex Event Recognition (CER) systems have become popular in the past two decades due to their ability to "instantly" detect patterns on real-time streams of events.
There is a lack of methods for forecasting when a pattern might occur before such an occurrence is actually detected by a CER engine.
We present a formal framework that attempts to address the issue of Complex Event Forecasting.
arXiv Detail & Related papers (2021-09-01T09:52:31Z) - Self-service Data Classification Using Interactive Visualization and
Interpretable Machine Learning [9.13755431537592]
Iterative Visual Logical (IVLC) is an interpretable machine learning algorithm.
IVLC is especially helpful when dealing with sensitive and crucial data like cancer data in the medical domain.
This chapter proposes an automated classification approach combined with new Coordinate Order (COO) algorithm and genetic algorithm.
arXiv Detail & Related papers (2021-07-11T05:39:14Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - PSEUDo: Interactive Pattern Search in Multivariate Time Series with
Locality-Sensitive Hashing and Relevance Feedback [3.347485580830609]
PSEUDo is an adaptive feature learning technique for exploring visual patterns in multi-track sequential data.
Our algorithm features sub-linear training and inference time.
We demonstrate superiority of PSEUDo in terms of efficiency, accuracy, and steerability.
arXiv Detail & Related papers (2021-04-30T13:00:44Z) - Online Learning Probabilistic Event Calculus Theories in Answer Set
Programming [70.06301658267125]
Event Recognition (CER) systems detect occurrences in streaming time-stamped datasets using predefined event patterns.
We present a system based on Answer Set Programming (ASP), capable of probabilistic reasoning with complex event patterns in the form of rules weighted in the Event Calculus.
Our results demonstrate the superiority of our novel approach, both terms efficiency and predictive.
arXiv Detail & Related papers (2021-03-31T23:16:29Z) - AgEBO-Tabular: Joint Neural Architecture and Hyperparameter Search with
Autotuned Data-Parallel Training for Tabular Data [11.552769149674544]
Development of high-performing predictive models for large data sets is a challenging task.
Recent automated machine learning (AutoML) is emerging as a promising approach to automate predictive model development.
We have developed AgEBO-Tabular, an approach to combine aging evolution (AgE) and a parallel NAS method that searches over neural architecture space.
arXiv Detail & Related papers (2020-10-30T16:28:48Z) - ARDA: Automatic Relational Data Augmentation for Machine Learning [23.570173866941612]
We present system, an end-to-end system that takes as input a dataset and a data repository, and outputs an augmented data set.
Our system has two distinct components: (1) a framework to search and join data with the input data, based on various attributes of the input, and (2) an efficient feature selection algorithm that prunes out noisy or irrelevant features from the resulting join.
arXiv Detail & Related papers (2020-03-21T21:55:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.