論文の概要: Tree-Based Adaptive Model Learning
- arxiv url: http://arxiv.org/abs/2209.00122v1
- Date: Wed, 31 Aug 2022 21:24:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-02 14:12:11.875940
- Title: Tree-Based Adaptive Model Learning
- Title(参考訳): 木に基づく適応モデル学習
- Authors: Tiago Ferreira, Gerco van Heerdt, and Alexandra Silva
- Abstract要約: 我々はKearns-Vazirani学習アルゴリズムを拡張し、時間とともに変化するシステムを扱う。
本稿では,学習前の動作を再利用し,更新し,LearnerLibライブラリに実装し,大規模な実例で評価する学習アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 62.997667081978825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We extend the Kearns-Vazirani learning algorithm to be able to handle systems
that change over time. We present a new learning algorithm that can reuse and
update previously learned behavior, implement it in the LearnLib library, and
evaluate it on large examples, to which we make small adjustments between two
runs of the algorithm. In these experiments our algorithm significantly
outperforms both the classic Kearns-Vazirani learning algorithm and the current
state-of-the-art adaptive algorithm.
- Abstract(参考訳): kearns-vazirani学習アルゴリズムを拡張して,時間とともに変化するシステムを処理可能にした。
そこで本研究では,学習した動作を再利用し,更新し,learnlibライブラリに実装し,大規模な実例で評価する新しい学習アルゴリズムを提案する。
これらの実験では,従来のkearns-vazirani学習アルゴリズムと現在の最先端適応アルゴリズムを有意に上回っている。
関連論文リスト
- From Learning to Optimize to Learning Optimization Algorithms [4.066869900592636]
我々は、古典的アルゴリズムが従うが、これまでは、学習の最適化(L2O)には使われていない重要な原則を特定します。
我々は,データ,アーキテクチャ,学習戦略を考慮した汎用設計パイプラインを提供し,古典最適化とL2Oの相乗効果を実現する。
我々は,新しい学習強化BFGSアルゴリズムを設計し,テスト時に多くの設定に適応する数値実験を行うことにより,これらの新原理の成功を実証する。
論文 参考訳(メタデータ) (2024-05-28T14:30:07Z) - Dual Algorithmic Reasoning [9.701208207491879]
本稿では,基礎となるアルゴリズム問題の双対性を利用してアルゴリズムを学習することを提案する。
アルゴリズム学習における最適化問題の2つの定義を同時に学習することで、より良い学習が可能になることを実証する。
次に、難易度の高い脳血管分類タスクにデプロイすることで、二元アルゴリズム推論の現実的な実用性を検証する。
論文 参考訳(メタデータ) (2023-02-09T08:46:23Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
クラスインクリメンタル学習(CIL)アルゴリズムは、インクリメンタルに到着したデータから新しいオブジェクトクラスを継続的に学習することを目的としている。
表現学習における様々な評価プロトコルを用いて,CILアルゴリズムによって訓練されたニューラルネットワークモデルを実験的に解析する。
論文 参考訳(メタデータ) (2022-06-16T11:44:11Z) - Emphatic Algorithms for Deep Reinforcement Learning [43.17171330951343]
時間差学習アルゴリズムは関数近似とオフポリシーサンプリングを組み合わせると不安定になる。
強調時間差(ETD($lambda$)アルゴリズム)は、TD($lambda$)更新を適切に重み付けすることで線形の場合の収束を保証する。
本稿では,ETD($lambda$)をフォワードビュー・マルチステップ・リターンを用いた一般的な深層強化学習アルゴリズムに適用することにより,性能が低下することを示す。
論文 参考訳(メタデータ) (2021-06-21T12:11:39Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
メタラーニング強化学習アルゴリズムの手法を提案する。
学習アルゴリズムはドメインに依存しないため、トレーニング中に見えない新しい環境に一般化することができる。
従来の制御タスク、gridworld型タスク、atariゲームよりも優れた一般化性能を得る2つの学習アルゴリズムに注目した。
論文 参考訳(メタデータ) (2021-01-08T18:55:07Z) - Towards Understanding the Behaviors of Optimal Deep Active Learning
Algorithms [19.65665942630067]
アクティブラーニング(AL)アルゴリズムは、モデルがデータ選択プロセスを導くため、より少ないデータでより良いパフォーマンスを達成できます。
alの最適形状についてはほとんど研究されていないため、研究者たちはモデルがどこが不足しているかを理解するのに役立つだろう。
我々は,この最適オラクルを探索し,いくつかのタスクで解析するシミュレーションアニーリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-29T22:56:42Z) - Mastering Rate based Curriculum Learning [78.45222238426246]
学習の進行という概念には、学習者のサンプル効率の低下につながるいくつかの欠点があると主張する。
本稿では,習得率の概念に基づく新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-14T16:34:01Z) - Meta-learning with Stochastic Linear Bandits [120.43000970418939]
我々は、よく知られたOFULアルゴリズムの正規化バージョンを実装するバンディットアルゴリズムのクラスを考える。
我々は,タスク数の増加とタスク分散の分散が小さくなると,タスクを個別に学習する上で,我々の戦略が大きな優位性を持つことを理論的および実験的に示す。
論文 参考訳(メタデータ) (2020-05-18T08:41:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。