Continuous-time Particle Filtering for Latent Stochastic Differential
Equations
- URL: http://arxiv.org/abs/2209.00173v1
- Date: Thu, 1 Sep 2022 01:05:31 GMT
- Title: Continuous-time Particle Filtering for Latent Stochastic Differential
Equations
- Authors: Ruizhi Deng, Greg Mori, Andreas M. Lehrmann
- Abstract summary: We propose continuous latent particle filters, an approach that extends particle filtering to the continuous-time domain.
We demonstrate how continuous latent particle filters can be used as a generic plug-in replacement for inference techniques relying on a learned variational posterior.
- Score: 37.51802583388233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Particle filtering is a standard Monte-Carlo approach for a wide range of
sequential inference tasks. The key component of a particle filter is a set of
particles with importance weights that serve as a proxy of the true posterior
distribution of some stochastic process. In this work, we propose continuous
latent particle filters, an approach that extends particle filtering to the
continuous-time domain. We demonstrate how continuous latent particle filters
can be used as a generic plug-in replacement for inference techniques relying
on a learned variational posterior. Our experiments with different model
families based on latent neural stochastic differential equations demonstrate
superior performance of continuous-time particle filtering in inference tasks
like likelihood estimation and sequential prediction for a variety of
stochastic processes.
Related papers
- Normalising Flow-based Differentiable Particle Filters [19.09640071505051]
We present a differentiable particle filtering framework that uses (conditional) normalising flows to build its dynamic model, proposal distribution, and measurement model.
We derive the theoretical properties of the proposed filters and evaluate the proposed normalising flow-based differentiable particle filters' performance through a series of numerical experiments.
arXiv Detail & Related papers (2024-03-03T12:23:17Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - An overview of differentiable particle filters for data-adaptive
sequential Bayesian inference [19.09640071505051]
Particle filters (PFs) provide an efficient mechanism for solving non-linear sequential state estimation problems.
An emerging trend involves constructing components of particle filters using neural networks and optimising them by gradient descent.
Differentiable particle filters are a promising computational tool for performing inference on sequential data in complex, high-dimensional tasks.
arXiv Detail & Related papers (2023-02-19T18:03:53Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
We propose a computational framework to approximate Doob's $h$-transforms.
The proposed approach can be orders of magnitude more efficient than state-of-the-art particle filters.
arXiv Detail & Related papers (2022-06-07T15:03:05Z) - Deep Learning for the Benes Filter [91.3755431537592]
We present a new numerical method based on the mesh-free neural network representation of the density of the solution of the Benes model.
We discuss the role of nonlinearity in the filtering model equations for the choice of the domain of the neural network.
arXiv Detail & Related papers (2022-03-09T14:08:38Z) - Innovative And Additive Outlier Robust Kalman Filtering With A Robust
Particle Filter [68.8204255655161]
We propose CE-BASS, a particle mixture Kalman filter which is robust to both innovative and additive outliers, and able to fully capture multi-modality in the distribution of the hidden state.
Furthermore, the particle sampling approach re-samples past states, which enables CE-BASS to handle innovative outliers which are not immediately visible in the observations, such as trend changes.
arXiv Detail & Related papers (2020-07-07T07:11:09Z) - When is Particle Filtering Efficient for Planning in Partially Observed
Linear Dynamical Systems? [60.703816720093016]
This paper initiates a study on the efficiency of particle filtering for sequential planning.
We are able to bound the number of particles needed so that the long-run reward of the policy based on particle filtering is close to that based on exact inference.
We believe this technique can be useful in other sequential decision-making problems.
arXiv Detail & Related papers (2020-06-10T17:43:43Z) - Towards Differentiable Resampling [22.92540370475242]
We present a novel network architecture, the particle transformer, and train it for particle resampling using a likelihood-based loss function over sets of particles.
Our results show that our learned resampler outperforms traditional resampling techniques on synthetic data and in a simulated robot localization task.
arXiv Detail & Related papers (2020-04-24T18:37:17Z) - Multiplicative Gaussian Particle Filter [18.615555573235987]
We propose a new sampling-based approach for approximate inference in filtering problems.
Instead of approximating conditional distributions with a finite set of states, as done in particle filters, our approach approximates the distribution with a weighted sum of functions from a set of continuous functions.
arXiv Detail & Related papers (2020-02-29T09:19:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.