論文の概要: Hidden Author Bias in Book Recommendation
- arxiv url: http://arxiv.org/abs/2209.00371v1
- Date: Thu, 1 Sep 2022 11:30:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-02 14:07:19.786459
- Title: Hidden Author Bias in Book Recommendation
- Title(参考訳): 書評に隠れた著作家バイアス
- Authors: Savvina Daniil, Mirjam Cuper, Cynthia C.S. Liem, Jacco van
Ossenbruggen, Laura Hollink
- Abstract要約: 協調フィルタリングアルゴリズムは、レコメンデーションを提供するために機密性の高いユーザーやアイテム情報を必要としないという利点がある。
我々は、しばしば人気バイアスは、研究者に追加のユーザー情報やアイテム情報が提供されない場合に明らかでない他のバイアスにつながると論じる。
- 参考スコア(独自算出の注目度): 4.2628421392139
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collaborative filtering algorithms have the advantage of not requiring
sensitive user or item information to provide recommendations. However, they
still suffer from fairness related issues, like popularity bias. In this work,
we argue that popularity bias often leads to other biases that are not obvious
when additional user or item information is not provided to the researcher. We
examine our hypothesis in the book recommendation case on a commonly used
dataset with book ratings. We enrich it with author information using publicly
available external sources. We find that popular books are mainly written by US
citizens in the dataset, and that these books tend to be recommended
disproportionally by popular collaborative filtering algorithms compared to the
users' profiles. We conclude that the societal implications of popularity bias
should be further examined by the scholar community.
- Abstract(参考訳): 協調フィルタリングアルゴリズムは、レコメンデーションを提供するためにセンシティブなユーザやアイテムの情報を必要としないという利点がある。
しかし、それでも人気バイアスのような公平な問題に苦しんでいる。
本研究では,研究者に付加的なユーザ情報やアイテム情報が提供されない場合,人気バイアスが他のバイアスにつながる場合が多いことを論じる。
本論文では,本格付データセットを用いて本推薦事例の仮説を検証した。
公開されている外部ソースを使用して著者情報を豊かにします。
人気書籍は,主に米国市民がデータセットで執筆し,それらの書籍は,ユーザのプロファイルと比較して,一般的な協調フィルタリングアルゴリズムによって不釣り合いに推奨される傾向がみられた。
我々は,人気バイアスの社会的含意を,学者コミュニティによってさらに検討すべきだと結論づける。
関連論文リスト
- From Lists to Emojis: How Format Bias Affects Model Alignment [67.08430328350327]
人的フィードバックからの強化学習における形式バイアスについて検討する。
人間の評価者を含む多くの広く使われている嗜好モデルは、特定のフォーマットパターンに対して強いバイアスを示す。
バイアスデータが少ないと、報酬モデルにかなりのバイアスを注入できることを示す。
論文 参考訳(メタデータ) (2024-09-18T05:13:18Z) - Large Language Models as Recommender Systems: A Study of Popularity Bias [46.17953988777199]
人気アイテムは不釣り合いに推奨され、あまり人気がないが、潜在的に関連のあるアイテムを誇張している。
近年,汎用大規模言語モデルのレコメンデーションシステムへの統合が進んでいる。
本研究は,LLMがレコメンデーションシステムにおける人気バイアスに寄与するか否かを検討する。
論文 参考訳(メタデータ) (2024-06-03T12:53:37Z) - Going Beyond Popularity and Positivity Bias: Correcting for Multifactorial Bias in Recommender Systems [74.47680026838128]
ユーザインタラクションデータとレコメンダシステム(RS)の2つの典型的なバイアスは、人気バイアスと肯定バイアスである。
項目と評価値の双方に影響される多因子選択バイアスについて検討する。
分散を低減し、最適化の堅牢性を向上させるため、スムースで交互に勾配降下する手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T12:18:21Z) - Metrics for popularity bias in dynamic recommender systems [0.0]
バイアスドレコメンデーションは個人、敏感なユーザーグループ、社会に悪影響を及ぼす可能性のある決定につながる可能性がある。
本稿では,RecSysモデルの出力から直接発生する人気バイアスの定量化に着目する。
RescSysにおける人気バイアスを時間とともに定量化するための4つの指標が提案されている。
論文 参考訳(メタデータ) (2023-10-12T16:15:30Z) - A Survey on Popularity Bias in Recommender Systems [5.952279576277445]
本稿では、人気バイアスの潜在的な原因について論じ、リコメンダシステムにおける人気バイアスを検出し、緩和し、定量化するための既存のアプローチをレビューする。
本稿では,主に計算実験に基づく研究であり,推奨項目に長期的項目を含めることの実践的効果について,特定の仮定を前提として,今日の文献を批判的に論じる。
論文 参考訳(メタデータ) (2023-08-02T12:58:11Z) - Whole Page Unbiased Learning to Rank [59.52040055543542]
アンバイアスド・ラーニング・トゥ・ランク(ULTR)アルゴリズムは、バイアスド・クリックデータを用いたアンバイアスド・ランキングモデルを学ぶために提案される。
本稿では,BALというアルゴリズムをランク付けするバイアス非依存学習を提案する。
実世界のデータセットによる実験結果から,BALの有効性が検証された。
論文 参考訳(メタデータ) (2022-10-19T16:53:08Z) - Tag-Aware Document Representation for Research Paper Recommendation [68.8204255655161]
本稿では,ユーザによって割り当てられたソーシャルタグに基づいて,研究論文の深い意味表現を活用するハイブリッドアプローチを提案する。
提案手法は,評価データが極めて少ない場合でも研究論文の推薦に有効である。
論文 参考訳(メタデータ) (2022-09-08T09:13:07Z) - The SAME score: Improved cosine based bias score for word embeddings [49.75878234192369]
埋め込みにおけるセマンティックバイアスのための新しいバイアススコアであるPetを紹介した。
本研究は,下水道作業における意味バイアスを測定し,社会的バイアスの潜在的な原因を特定することができることを示す。
論文 参考訳(メタデータ) (2022-03-28T09:28:13Z) - The Unfairness of Popularity Bias in Book Recommendation [0.0]
人気度バイアスとは、人気アイテムが頻繁に推奨されるのに対して、人気アイテムがほとんどあるいはまったく推奨されないという問題を指す。
本稿では,有名な書籍分類データセットを分析し,人気商品に対する傾向に基づいて3つのユーザグループを定義した。
以上の結果から,ほとんどの最先端の推薦アルゴリズムは本分野における人気バイアスに悩まされていることが示唆された。
論文 参考訳(メタデータ) (2022-02-27T20:21:46Z) - An Adaptive Boosting Technique to Mitigate Popularity Bias in
Recommender System [1.5800354337004194]
一般的な精度尺度は人気項目に偏りがあり、非人気項目と比較して人気項目の精度が向上する。
本稿では,人気項目と非人気項目の誤りの差として,人気バイアスを測定する指標について考察する。
そこで本研究では,データ中の人気バイアスを低減させるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-13T03:04:55Z) - Correcting Exposure Bias for Link Recommendation [31.799185352323807]
露出バイアスは、ユーザーが特定の関連項目に体系的に過小評価されているときに生じる。
このバイアスを軽減するために、既知の露光確率を利用する推定器を提案する。
我々の手法は、推奨論文の研究分野においてより多様性をもたらす。
論文 参考訳(メタデータ) (2021-06-13T16:51:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。