論文の概要: An Incremental Learning framework for Large-scale CTR Prediction
- arxiv url: http://arxiv.org/abs/2209.00458v1
- Date: Thu, 1 Sep 2022 16:11:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-02 14:20:05.007884
- Title: An Incremental Learning framework for Large-scale CTR Prediction
- Title(参考訳): 大規模CTR予測のためのインクリメンタルラーニングフレームワーク
- Authors: Petros Katsileros (1 and 2), Nikiforos Mandilaras (1 and 2), Dimitrios
Mallis (1 and 2), Vassilis Pitsikalis (1 and 2), Stavros Theodorakis (1 and
2) and Gil Chamiel (2) ((1) Deeplab - Greece, (2) Taboola.com - Israel)
- Abstract要約: 我々はClick-Through-Rate(CTR)予測のための漸進的な学習フレームワークを導入する。
われわれはTaboolaの大規模レコメンデーションサービスの有効性を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this work we introduce an incremental learning framework for
Click-Through-Rate (CTR) prediction and demonstrate its effectiveness for
Taboola's massive-scale recommendation service. Our approach enables rapid
capture of emerging trends through warm-starting from previously deployed
models and fine tuning on "fresh" data only. Past knowledge is maintained via a
teacher-student paradigm, where the teacher acts as a distillation technique,
mitigating the catastrophic forgetting phenomenon. Our incremental learning
framework enables significantly faster training and deployment cycles (x12
speedup). We demonstrate a consistent Revenue Per Mille (RPM) lift over
multiple traffic segments and a significant CTR increase on newly introduced
items.
- Abstract(参考訳): 本稿では,クリックスルーレート(ctr)予測のためのインクリメンタル学習フレームワークを導入し,taboolaの大規模レコメンデーションサービスの有効性を示す。
このアプローチでは,既存のモデルからウォームスタートし,"フレッシュ"データのみを微調整することで,新たなトレンドを迅速に捉えることができる。
過去の知識は、教師が蒸留技術として働き、破滅的な忘れ物現象を緩和する教師-学生パラダイムを通じて維持される。
インクリメンタルな学習フレームワークは、トレーニングとデプロイメントサイクル(x12スピードアップ)を大幅に高速化します。
我々は、複数のトラフィックセグメントをまたいだ一貫した収益パーミル(RPM)リフトと、新しく導入されたアイテムに対するCTRの大幅な増加を示す。
関連論文リスト
- Enhancing CTR Prediction through Sequential Recommendation Pre-training: Introducing the SRP4CTR Framework [13.574487867743773]
クリックスルーレート(CTR)予測のための逐次勧告事前学習フレームワーク(SRP4CTR)を提案する。
本稿では,事前学習モデルの導入が推論コストに与える影響について論じるとともに,シーケンス側情報を同時に符号化する事前学習手法を提案する。
我々は,事前学習モデルから産業用CTRモデルへの知識伝達を容易にするクエリ変換手法を開発した。
論文 参考訳(メタデータ) (2024-07-29T02:49:11Z) - Continual Learners are Incremental Model Generalizers [70.34479702177988]
本稿では,継続学習モデル(CL)が事前学習者に与える影響を幅広く研究する。
その結果, 微調整性能が著しく低下することなく, 表現の伝達品質が徐々に向上することがわかった。
本稿では,下流タスクの解法において,リッチなタスクジェネリック表現を保存できる新しい微調整方式GLobal Attention Discretization(GLAD)を提案する。
論文 参考訳(メタデータ) (2023-06-21T05:26:28Z) - DELTA: Dynamic Embedding Learning with Truncated Conscious Attention for
CTR Prediction [61.68415731896613]
CTR(Click-Through Rate)予測は、製品とコンテンツの推奨において重要なタスクである。
本稿では,CTR予測のための動的埋め込み学習を実現するモデルを提案する。
論文 参考訳(メタデータ) (2023-05-03T12:34:45Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
本研究では,モデルが学習する時間とともに,新しいデータクラスが観察される学習環境であるクラスインクリメンタルラーニングについて検討する。
素直な問題定式化にもかかわらず、クラス増分学習への分類モデルの素直な適用は、これまで見られたクラスの「破滅的な忘れ込み」をもたらす。
これは、過去のデータのサブセットをメモリバンクに保存し、将来のタスクをトレーニングする際の忘れの防止にそれを活用することで、破滅的な忘れの問題を克服するものだ。
論文 参考訳(メタデータ) (2022-10-10T08:27:28Z) - Concept Drift Adaptation for CTR Prediction in Online Advertising
Systems [6.900209851954917]
クリックスルー率(CTR)予測は、ウェブ検索、レコメンダシステム、オンライン広告表示において重要な課題である。
本稿では,CTR予測データストリームにおける適応フィルタリングによるコンセプトドリフト問題を軽減するために,専門家の適応混合(AdaMoE)を提案する。
論文 参考訳(メタデータ) (2022-04-01T07:43:43Z) - Reinforcement Learning with Action-Free Pre-Training from Videos [95.25074614579646]
本稿では,ビデオにおける生成前学習を通じて動的理解に役立つ表現を学習するフレームワークを提案する。
我々のフレームワークは、視覚に基づく強化学習の最終性能とサンプル効率の両方を著しく改善する。
論文 参考訳(メタデータ) (2022-03-25T19:44:09Z) - Continual Learning for CTR Prediction: A Hybrid Approach [37.668467137218286]
CTR予測のためのハイブリッドなContinual Learning FrameworkであるCOLFを提案する。
COLFはメモリベースのモジュールアーキテクチャを持ち、継続的な適応、学習、予測を行うように設計されている。
中国の大手ショッピングアプリから収集したクリックログに関する実証的評価は,既存の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-18T11:30:57Z) - Efficient Click-Through Rate Prediction for Developing Countries via
Tabular Learning [2.916402752324148]
CTR(Click-Through Rate)予測モデルは,限られた計算資源のため,展開が困難である。
本稿では,表型学習モデルがCTR予測においてより効率的かつ有効であることを示す。
論文 参考訳(メタデータ) (2021-04-15T16:07:25Z) - Ensemble Knowledge Distillation for CTR Prediction [46.92149090885551]
我々は知識蒸留(KD)に基づく新しいモデルトレーニング戦略を提案する。
KDは、教師モデルから学んだ知識を学生モデルに移すための教師学生学習フレームワークである。
本稿では,教師のゲーティングや蒸留損失による早期停止など,CTR予測のアンサンブル化を促進する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-11-08T23:37:58Z) - Remembering for the Right Reasons: Explanations Reduce Catastrophic
Forgetting [100.75479161884935]
我々は、RRR(Remembering for the Right Reasons)と呼ばれる新しいトレーニングパラダイムを提案する。
RRRは、各例の視覚モデル説明をバッファに格納し、モデルが予測に「正しい理由」を持つことを保証する。
メモリや正規化ベースのアプローチでRRRを容易に追加できることを示し、その結果、忘れを少なくする。
論文 参考訳(メタデータ) (2020-10-04T10:05:27Z) - Iterative Boosting Deep Neural Networks for Predicting Click-Through
Rate [15.90144113403866]
クリックスルーレート(CTR)は、特定の項目のクリックの比率を、そのビューの総数に反映する。
XdBoostは、従来の機械学習の強化メカニズムの影響を受け、反復的な3段階ニューラルネットワークモデルである。
論文 参考訳(メタデータ) (2020-07-26T09:41:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。