Learning correspondences of cardiac motion from images using
biomechanics-informed modeling
- URL: http://arxiv.org/abs/2209.00726v1
- Date: Thu, 1 Sep 2022 20:59:26 GMT
- Title: Learning correspondences of cardiac motion from images using
biomechanics-informed modeling
- Authors: Xiaoran Zhang, Chenyu You, Shawn Ahn, Juntang Zhuang, Lawrence Staib,
James Duncan
- Abstract summary: We propose an explicit biomechanics-informed prior as regularization on the predicted displacement vector field (DVF)
Our proposed methods better preserve biomechanical properties by visual assessment and show advantages in segmentation performance using quantitative evaluation metrics.
- Score: 7.193217430660012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning spatial-temporal correspondences in cardiac motion from images is
important for understanding the underlying dynamics of cardiac anatomical
structures. Many methods explicitly impose smoothness constraints such as the
$\mathcal{L}_2$ norm on the displacement vector field (DVF), while usually
ignoring biomechanical feasibility in the transformation. Other geometric
constraints either regularize specific regions of interest such as imposing
incompressibility on the myocardium or introduce additional steps such as
training a separate network-based regularizer on physically simulated datasets.
In this work, we propose an explicit biomechanics-informed prior as
regularization on the predicted DVF in modeling a more generic biomechanically
plausible transformation within all cardiac structures without introducing
additional training complexity. We validate our methods on two publicly
available datasets in the context of 2D MRI data and perform extensive
experiments to illustrate the effectiveness and robustness of our proposed
methods compared to other competing regularization schemes. Our proposed
methods better preserve biomechanical properties by visual assessment and show
advantages in segmentation performance using quantitative evaluation metrics.
The code is publicly available at
\url{https://github.com/Voldemort108X/bioinformed_reg}.
Related papers
- Preserving Cardiac Integrity: A Topology-Infused Approach to Whole Heart Segmentation [6.495726693226574]
Whole heart segmentation (WHS) supports cardiovascular disease diagnosis, disease monitoring, treatment planning, and prognosis.
This paper introduces a new topology-preserving module that is integrated into deep neural networks.
The implementation achieves anatomically plausible segmentation by using learned topology-preserving fields, which are based entirely on 3D convolution and are therefore very effective for 3D voxel data.
arXiv Detail & Related papers (2024-10-14T14:32:05Z) - Explicit Differentiable Slicing and Global Deformation for Cardiac Mesh Reconstruction [8.730291904586656]
Mesh reconstruction of the cardiac anatomy from medical images is useful for shape and motion measurements and biophysics simulations.
Traditional voxel-based approaches rely on pre- and post-processing that compromises image fidelity.
We propose a novel explicit differentiable voxelization and slicing (DVS) algorithm that allows gradient backpropagation to a mesh from its slices.
arXiv Detail & Related papers (2024-09-03T17:19:31Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
We integrate a musculoskeletal system with a learnable parametric hand model, MANO, to create MS-MANO.
This model emulates the dynamics of muscles and tendons to drive the skeletal system, imposing physiologically realistic constraints on the resulting torque trajectories.
We also propose a simulation-in-the-loop pose refinement framework, BioPR, that refines the initial estimated pose through a multi-layer perceptron network.
arXiv Detail & Related papers (2024-04-16T02:18:18Z) - An Optimization Framework to Personalize Passive Cardiac Mechanics [1.3127539363517526]
This study introduces an inverse finite element analysis (iFEA) framework to estimate the passive mechanical properties of cardiac tissue.
With a focus on characterizing the passive mechanical behavior, the framework employs structurally based anisotropic hyperelastic models.
The framework is tested in myocardium models of biricle and left atrium derived from cardiac phase-resolved computed tomographic (CT) images.
arXiv Detail & Related papers (2024-04-03T15:23:17Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.
We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.
We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - S3M: Scalable Statistical Shape Modeling through Unsupervised
Correspondences [91.48841778012782]
We propose an unsupervised method to simultaneously learn local and global shape structures across population anatomies.
Our pipeline significantly improves unsupervised correspondence estimation for SSMs compared to baseline methods.
Our method is robust enough to learn from noisy neural network predictions, potentially enabling scaling SSMs to larger patient populations.
arXiv Detail & Related papers (2023-04-15T09:39:52Z) - A Generative Shape Compositional Framework to Synthesise Populations of
Virtual Chimaeras [52.33206865588584]
We introduce a generative shape model for complex anatomical structures, learnable from datasets of unpaired datasets.
We build virtual chimaeras from databases of whole-heart shape assemblies that each contribute samples for heart substructures.
Our approach significantly outperforms a PCA-based shape model (trained with complete data) in terms of generalisability and specificity.
arXiv Detail & Related papers (2022-10-04T13:36:52Z) - Generative Myocardial Motion Tracking via Latent Space Exploration with
Biomechanics-informed Prior [16.129107206314043]
Myocardial motion and deformation are rich descriptors that characterize cardiac function.
Image registration, as the most commonly used technique for myocardial motion tracking, is an ill-posed inverse problem.
We propose a novel method that can implicitly learn an application-specific biomechanics-informed prior.
arXiv Detail & Related papers (2022-06-08T12:02:00Z) - PhysFormer: Facial Video-based Physiological Measurement with Temporal
Difference Transformer [55.936527926778695]
Recent deep learning approaches focus on mining subtle r clues using convolutional neural networks with limited-temporal receptive fields.
In this paper, we propose the PhysFormer, an end-to-end video transformer based architecture.
arXiv Detail & Related papers (2021-11-23T18:57:11Z) - Biomechanics-informed Neural Networks for Myocardial Motion Tracking in
MRI [15.686391154738006]
We propose a novel method that can implicitly learn biomechanics-informed regularisation.
The proposed method is validated in the context of myocardial motion tracking on 2D stacks of cardiac MRI data.
arXiv Detail & Related papers (2020-06-08T16:29:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.