An Optimization Framework to Personalize Passive Cardiac Mechanics
- URL: http://arxiv.org/abs/2404.02807v3
- Date: Sat, 6 Apr 2024 03:24:27 GMT
- Title: An Optimization Framework to Personalize Passive Cardiac Mechanics
- Authors: Lei Shi, Ian Chen, Hiroo Takayama, Vijay Vedula,
- Abstract summary: This study introduces an inverse finite element analysis (iFEA) framework to estimate the passive mechanical properties of cardiac tissue.
With a focus on characterizing the passive mechanical behavior, the framework employs structurally based anisotropic hyperelastic models.
The framework is tested in myocardium models of biricle and left atrium derived from cardiac phase-resolved computed tomographic (CT) images.
- Score: 1.3127539363517526
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Personalized cardiac mechanics modeling is a powerful tool for understanding the biomechanics of cardiac function in health and disease and assisting in treatment planning. However, current models are limited to using medical images acquired at a single cardiac phase, often limiting their applicability for processing dynamic image acquisitions. This study introduces an inverse finite element analysis (iFEA) framework to estimate the passive mechanical properties of cardiac tissue using time-dependent medical image data. The iFEA framework relies on a novel nested optimization scheme, in which the outer iterations utilize a traditional optimization method to best approximate material parameters that fit image data, while the inner iterations employ an augmented Sellier's algorithm to estimate the stress-free reference configuration. With a focus on characterizing the passive mechanical behavior, the framework employs structurally based anisotropic hyperelastic constitutive models and physiologically relevant boundary conditions to simulate myocardial mechanics. We use a stabilized variational multiscale formulation for solving the governing nonlinear elastodynamics equations, verified for cardiac mechanics applications. The framework is tested in myocardium models of biventricle and left atrium derived from cardiac phase-resolved computed tomographic (CT) images of a healthy subject and three patients with hypertrophic obstructive cardiomyopathy (HOCM). The impact of the choice of optimization methods and other numerical settings, including fiber direction parameters, mesh size, initial parameters for optimization, and perturbations to optimal material parameters, is assessed using a rigorous sensitivity analysis. The performance of the current iFEA is compared against an assumed power-law-based pressure-volume relation, typically used for single-phase image acquisition.
Related papers
- Mesh-Informed Reduced Order Models for Aneurysm Rupture Risk Prediction [0.0]
Graph Neural Networks (GNNs) exploit the natural graph structure of the mesh obtained by the Finite Volume (FV) discretization.
Our experimental validation framework yields promising results, confirming our method as a valid alternative that overcomes the curse of dimensionality.
arXiv Detail & Related papers (2024-10-04T09:39:15Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
We introduce a novel method, Geodesic-BP, to solve the inverse eikonal problem.
We show that Geodesic-BP can reconstruct a simulated cardiac activation with high accuracy in a synthetic test case.
Given the future shift towards personalized medicine, Geodesic-BP has the potential to help in future functionalizations of cardiac models.
arXiv Detail & Related papers (2023-08-16T14:57:12Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.
We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.
We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - Self-Supervised Learning for Physiologically-Based Pharmacokinetic
Modeling in Dynamic PET [36.28565007063204]
Voxel-wise physiologically-based modeling of the time activity curves (TAC) can provide relevant diagnostic information for clinical workflow.
This work introduces a self-supervisedPET loss formulation to enforce the similarity between the measured TAC and those generated with the learned kinetic parameters.
To the best of our knowledge, this is the first self-supervised network that allows elvox-wise computation of kinetic parameters consistent with a non-linear kinetic model.
arXiv Detail & Related papers (2023-05-17T21:08:02Z) - Towards a unified nonlocal, peridynamics framework for the
coarse-graining of molecular dynamics data with fractures [6.478834929962051]
We propose a learning framework to extract a peridynamic model as a mesoscale continuum surrogate from MD simulated material fracture datasets.
Our peridynamics surrogate model can be employed in further prediction tasks with different grid resolutions from training.
arXiv Detail & Related papers (2023-01-11T16:07:17Z) - Learning correspondences of cardiac motion from images using
biomechanics-informed modeling [7.193217430660012]
We propose an explicit biomechanics-informed prior as regularization on the predicted displacement vector field (DVF)
Our proposed methods better preserve biomechanical properties by visual assessment and show advantages in segmentation performance using quantitative evaluation metrics.
arXiv Detail & Related papers (2022-09-01T20:59:26Z) - Three-dimensional micro-structurally informed in silico myocardium --
towards virtual imaging trials in cardiac diffusion weighted MRI [58.484353709077034]
We propose a novel method to generate a realistic numerical phantom of myocardial microstructure.
In-silico tissue models enable evaluating quantitative models of magnetic resonance imaging.
arXiv Detail & Related papers (2022-08-22T22:01:44Z) - Continuous Forecasting via Neural Eigen Decomposition of Stochastic
Dynamics [47.82509795873254]
We introduce the Neural Eigen-SDE (NESDE) algorithm for sequential prediction with sparse observations and adaptive dynamics.
NESDE applies eigen-decomposition to the dynamics model to allow efficient frequent predictions given sparse observations.
We are the first to provide a patient-adapted prediction for blood coagulation following Heparin dosing in the MIMIC-IV dataset.
arXiv Detail & Related papers (2022-01-31T22:16:50Z) - Resource Planning for Hospitals Under Special Consideration of the
COVID-19 Pandemic: Optimization and Sensitivity Analysis [87.31348761201716]
Crises like the COVID-19 pandemic pose a serious challenge to health-care institutions.
BaBSim.Hospital is a tool for capacity planning based on discrete event simulation.
We aim to investigate and optimize these parameters to improve BaBSim.Hospital.
arXiv Detail & Related papers (2021-05-16T12:38:35Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.