論文の概要: Optimistic Optimization of Gaussian Process Samples
- arxiv url: http://arxiv.org/abs/2209.00895v1
- Date: Fri, 2 Sep 2022 09:06:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-05 12:37:12.414980
- Title: Optimistic Optimization of Gaussian Process Samples
- Title(参考訳): ガウス過程サンプルの最適最適化
- Authors: Julia Grosse, Cheng Zhang, Philipp Hennig
- Abstract要約: 競合する、計算的により効率的でグローバルな最適化フレームワークは楽観的な最適化であり、これは探索空間の幾何学に関する事前知識を相似関数として利用している。
幾何的探索と確率的探索の間には新たな研究領域があり、ベイズ最適化の重要な機能を保ちながら、従来のベイズ最適化よりも大幅に高速に実行される方法がある。
- 参考スコア(独自算出の注目度): 30.226274682578172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian optimization is a popular formalism for global optimization, but its
computational costs limit it to expensive-to-evaluate functions. A competing,
computationally more efficient, global optimization framework is optimistic
optimization, which exploits prior knowledge about the geometry of the search
space in form of a dissimilarity function. We investigate to which degree the
conceptual advantages of Bayesian Optimization can be combined with the
computational efficiency of optimistic optimization. By mapping the kernel to a
dissimilarity, we obtain an optimistic optimization algorithm for the Bayesian
Optimization setting with a run-time of up to $\mathcal{O}(N \log N)$. As a
high-level take-away we find that, when using stationary kernels on objectives
of relatively low evaluation cost, optimistic optimization can be strongly
preferable over Bayesian optimization, while for strongly coupled and
parametric models, good implementations of Bayesian optimization can perform
much better, even at low evaluation cost. We argue that there is a new research
domain between geometric and probabilistic search, i.e. methods that run
drastically faster than traditional Bayesian optimization, while retaining some
of the crucial functionality of Bayesian optimization.
- Abstract(参考訳): ベイズ最適化はグローバル最適化の一般的な形式主義であるが、計算コストは高価な関数に制限される。
競合的で計算効率の良いグローバル最適化フレームワークは楽観的最適化であり、検索空間の幾何に関する事前知識を異質性関数として活用する。
ベイズ最適化の概念的利点と楽観的最適化の計算効率を組み合わせることができるかを検討する。
カーネルを異性度にマッピングすることにより、最大で$\mathcal{O}(N \log N)$のランタイムを持つベイズ最適化設定に対する楽観的な最適化アルゴリズムを得る。
評価コストが比較的低い目的に定常カーネルを使用する場合、ベイズ最適化よりも楽観的な最適化が強く望ましいが、強く結合されたパラメトリックモデルでは、評価コストが低い場合でもベイズ最適化の優れた実装がはるかに優れている。
幾何的探索と確率的探索の間には新たな研究領域があり、ベイズ最適化の重要な機能を保ちながら、従来のベイズ最適化よりも大幅に高速に実行される方法がある。
関連論文リスト
- Localized Zeroth-Order Prompt Optimization [54.964765668688806]
そこで我々は,ZOPO(Localized zeroth-order prompt optimization)という新しいアルゴリズムを提案する。
ZOPOはニューラル・タンジェント・カーネルをベースとしたガウス法を標準ゼロ階次最適化に取り入れ、高速な局所最適探索を高速化する。
注目すべきは、ZOPOは最適化性能とクエリ効率の両方の観点から、既存のベースラインを上回っていることだ。
論文 参考訳(メタデータ) (2024-03-05T14:18:15Z) - A General Framework for User-Guided Bayesian Optimization [51.96352579696041]
コラボ (ColaBO) は、典型的なカーネル構造を超越した事前信念のための最初のベイズ原理の枠組みである。
我々は,ColaBOの事前情報が正確である場合に最適化を著しく高速化し,ミスリード時のほぼ既定性能を維持する能力を実証的に実証した。
論文 参考訳(メタデータ) (2023-11-24T18:27:26Z) - Non-Convex Optimization with Certificates and Fast Rates Through Kernel
Sums of Squares [68.8204255655161]
非最適化近似問題を考える。
本稿では,最優先計算を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-11T09:37:04Z) - LinEasyBO: Scalable Bayesian Optimization Approach for Analog Circuit
Synthesis via One-Dimensional Subspaces [11.64233949999656]
アナログ回路合成のための1次元部分空間による高速でロバストなベイズ最適化手法を提案する。
提案アルゴリズムは,バッチサイズが15のとき,LP-EIおよびREMBOpBOと比較して最大9倍,38倍の最適化手順を高速化できる。
論文 参考訳(メタデータ) (2021-09-01T21:25:25Z) - An Efficient Batch Constrained Bayesian Optimization Approach for Analog
Circuit Synthesis via Multi-objective Acquisition Ensemble [11.64233949999656]
MACE(Multi-objective Acquisition Function Ensemble)を用いた並列化可能なベイズ最適化アルゴリズムを提案する。
提案アルゴリズムは,バッチサイズが15のときの非制約最適化問題に対する微分進化(DE)と比較して,シミュレーション全体の時間を最大74倍削減することができる。
制約付き最適化問題に対して,提案アルゴリズムは,バッチサイズが15の場合に,重み付き改善に基づくベイズ最適化(WEIBO)アプローチと比較して最大15倍の高速化を実現することができる。
論文 参考訳(メタデータ) (2021-06-28T13:21:28Z) - Are we Forgetting about Compositional Optimisers in Bayesian
Optimisation? [66.39551991177542]
本稿では,グローバル最適化のためのサンプル手法を提案する。
この中、重要なパフォーマンス決定の自明さは、取得機能を最大化することです。
3958実験における機能最適化手法の実証的利点を強調する。
論文 参考訳(メタデータ) (2020-12-15T12:18:38Z) - BOSH: Bayesian Optimization by Sampling Hierarchically [10.10241176664951]
本稿では,階層的なガウス過程と情報理論の枠組みを組み合わせたBOルーチンを提案する。
BOSHは, ベンチマーク, シミュレーション最適化, 強化学習, ハイパーパラメータチューニングタスクにおいて, 標準BOよりも効率的で高精度な最適化を実現する。
論文 参考訳(メタデータ) (2020-07-02T07:35:49Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z) - Incorporating Expert Prior in Bayesian Optimisation via Space Warping [54.412024556499254]
大きな探索空間では、アルゴリズムは関数の最適値に達する前に、いくつかの低関数値領域を通過する。
このコールドスタートフェーズの1つのアプローチは、最適化を加速できる事前知識を使用することである。
本稿では,関数の事前分布を通じて,関数の最適性に関する事前知識を示す。
先行分布は、探索空間を最適関数の高確率領域の周りに拡張し、最適関数の低確率領域の周りに縮小するようにワープする。
論文 参考訳(メタデータ) (2020-03-27T06:18:49Z) - Composition of kernel and acquisition functions for High Dimensional
Bayesian Optimization [0.1749935196721634]
目的関数の追加性を用いて、ベイズ最適化のカーネルと取得関数の両方をマッピングする。
このap-proachは確率的代理モデルの学習/更新をより効率的にする。
都市給水システムにおけるポンプの制御を実運用に適用するための結果が提示された。
論文 参考訳(メタデータ) (2020-03-09T15:45:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。