論文の概要: BOSH: Bayesian Optimization by Sampling Hierarchically
- arxiv url: http://arxiv.org/abs/2007.00939v1
- Date: Thu, 2 Jul 2020 07:35:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 13:16:26.438809
- Title: BOSH: Bayesian Optimization by Sampling Hierarchically
- Title(参考訳): bosh:階層的サンプリングによるベイズ最適化
- Authors: Henry B. Moss, David S. Leslie, Paul Rayson
- Abstract要約: 本稿では,階層的なガウス過程と情報理論の枠組みを組み合わせたBOルーチンを提案する。
BOSHは, ベンチマーク, シミュレーション最適化, 強化学習, ハイパーパラメータチューニングタスクにおいて, 標準BOよりも効率的で高精度な最適化を実現する。
- 参考スコア(独自算出の注目度): 10.10241176664951
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deployments of Bayesian Optimization (BO) for functions with stochastic
evaluations, such as parameter tuning via cross validation and simulation
optimization, typically optimize an average of a fixed set of noisy
realizations of the objective function. However, disregarding the true
objective function in this manner finds a high-precision optimum of the wrong
function. To solve this problem, we propose Bayesian Optimization by Sampling
Hierarchically (BOSH), a novel BO routine pairing a hierarchical Gaussian
process with an information-theoretic framework to generate a growing pool of
realizations as the optimization progresses. We demonstrate that BOSH provides
more efficient and higher-precision optimization than standard BO across
synthetic benchmarks, simulation optimization, reinforcement learning and
hyper-parameter tuning tasks.
- Abstract(参考訳): クロス検証やシミュレーション最適化によるパラメータチューニングのような確率的評価を持つ関数に対するベイズ最適化(bo)の配置は、通常、目的関数の固定されたノイズ発生の平均を最適化する。
しかし、この方法で真の目的関数を無視すると、誤った関数の高精度な最適化が見つかる。
この問題を解決するために,階層型ガウス過程と情報理論フレームワークを組み合わせ,最適化が進むにつれて実現のプールを増大させる新しいBOルーチンである階層型ガウス法(BOSH)をサンプリングしてベイズ最適化を提案する。
BOSHは, ベンチマーク, シミュレーション最適化, 強化学習, ハイパーパラメータチューニングタスクにおいて, 標準BOよりも効率的で高精度な最適化を実現する。
関連論文リスト
- Poisson Process for Bayesian Optimization [126.51200593377739]
本稿では、Poissonプロセスに基づくランキングベースの代理モデルを提案し、Poisson Process Bayesian Optimization(PoPBO)と呼ばれる効率的なBOフレームワークを提案する。
従来のGP-BO法と比較すると,PoPBOはコストが低く,騒音に対する堅牢性も良好であり,十分な実験により検証できる。
論文 参考訳(メタデータ) (2024-02-05T02:54:50Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Optimistic Optimization of Gaussian Process Samples [30.226274682578172]
競合する、計算的により効率的でグローバルな最適化フレームワークは楽観的な最適化であり、これは探索空間の幾何学に関する事前知識を相似関数として利用している。
幾何的探索と確率的探索の間には新たな研究領域があり、ベイズ最適化の重要な機能を保ちながら、従来のベイズ最適化よりも大幅に高速に実行される方法がある。
論文 参考訳(メタデータ) (2022-09-02T09:06:24Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
本稿では,探索空間の活用と探索のバランスをとるための新しいベイズ代理モデルを提案する。
拡張性のある関数サンプリングを実現するため、GPモデル毎にランダムな特徴ベースのカーネル近似を利用する。
提案した EGP-TS を大域的最適に収束させるため,ベイズ的後悔の概念に基づいて解析を行う。
論文 参考訳(メタデータ) (2022-05-27T16:43:10Z) - Sparse Bayesian Optimization [16.867375370457438]
よりスパースで解釈可能な構成を発見できる正規化ベースのアプローチをいくつか提示する。
そこで本研究では,同相連続に基づく新たな微分緩和法を提案し,空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間的空間
スパシティのために効率的に最適化できることが示されています。
論文 参考訳(メタデータ) (2022-03-03T18:25:33Z) - Are we Forgetting about Compositional Optimisers in Bayesian
Optimisation? [66.39551991177542]
本稿では,グローバル最適化のためのサンプル手法を提案する。
この中、重要なパフォーマンス決定の自明さは、取得機能を最大化することです。
3958実験における機能最適化手法の実証的利点を強調する。
論文 参考訳(メタデータ) (2020-12-15T12:18:38Z) - Additive Tree-Structured Conditional Parameter Spaces in Bayesian
Optimization: A Novel Covariance Function and a Fast Implementation [34.89735938765757]
木構造関数への加法仮定を一般化し, 改良された試料効率, より広い適用性, 柔軟性を示す。
パラメータ空間の構造情報と加法仮定をBOループに組み込むことで,取得関数を最適化する並列アルゴリズムを開発した。
本稿では,事前学習したVGG16およびRes50モデルのプルーニングとResNet20の検索アクティベーション関数に関する最適化ベンチマーク関数について述べる。
論文 参考訳(メタデータ) (2020-10-06T16:08:58Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z) - Additive Tree-Structured Covariance Function for Conditional Parameter
Spaces in Bayesian Optimization [34.89735938765757]
木構造関数への加法的仮定を一般化する。
パラメータ空間の構造情報と加法仮定をBOループに組み込むことで,取得関数を最適化する並列アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-06-21T11:21:55Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z) - Composition of kernel and acquisition functions for High Dimensional
Bayesian Optimization [0.1749935196721634]
目的関数の追加性を用いて、ベイズ最適化のカーネルと取得関数の両方をマッピングする。
このap-proachは確率的代理モデルの学習/更新をより効率的にする。
都市給水システムにおけるポンプの制御を実運用に適用するための結果が提示された。
論文 参考訳(メタデータ) (2020-03-09T15:45:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。