Identical damped harmonic oscillators described by coherent states
- URL: http://arxiv.org/abs/2209.00914v1
- Date: Fri, 2 Sep 2022 09:48:36 GMT
- Title: Identical damped harmonic oscillators described by coherent states
- Authors: S. V. Mousavi
- Abstract summary: We take a single coherent state and compute the relative entropy of coherence, $C_r$, in the energy, position and momentum bases.
Coherence is computed for a superposition of two coherent states, a cat state, and also a superposition of two cat states in the energy basis as a function of separation.
Considering a system of two non-interacting DHOs, the effect of quantum statistics is studied on the coherence of reduced single-particle states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Some aspects of quantum damped harmonic oscillator (DHO) obeying a Markovian
master equation are considered in absence of thermal noise. The continuity
equation is derived and Bohmian trajectories are constructed. As a solution of
the master equation, we take a single coherent state and compute analytically
the relative entropy of coherence, $C_r$, in the energy, position and momentum
bases. Although $C_r$ is constant in both the position and the momentum bases,
it is a decreasing function of time in the energy basis becoming zero at long
times, revealing its role as the preferred basis. Then, coherence is computed
for a superposition of two coherent states, a cat state, and also a
superposition of two cat states in the energy basis as a function of
separation, in complex plane, between the two superposed states. It is seen
that the coherence increases with this separation. Furthermore, coherence of
superposition is compared to that of decomposed states in the superposition.
Finally, considering a system of two non-interacting DHOs, the effect of
quantum statistics is studied on the coherence of reduced single-particle
states, the joint detection probability and the mean square separation of
particles. Our computations show that the single-particle coherence for
antisymmetric states is always less than that of symmetric ones. Furthermore,
boson anti-bunching and fermion bunching is seen in this interacting open
system.
Related papers
- Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Dissipation-induced bound states as a two-level system [0.0]
An anti-parity-time symmetric system can have a single pair of real energy levels, while all the remaining levels are unstable due to the negative imaginary part of the energy.
In this work, we investigate the formation of bound states in a tight-binding chain induced by a harmonic imaginary potential.
arXiv Detail & Related papers (2024-05-28T03:25:31Z) - Understanding multiple timescales in quantum dissipative dynamics:
Insights from quantum trajectories [0.0]
We show that open quantum systems with nearly degenerate energy levels exhibit long-lived metastable states in the approach to equilibrium.
This is a result of dramatic separation of timescales due to differences between Liouvillian eigenvalues.
arXiv Detail & Related papers (2024-02-07T02:06:51Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - System-bath entanglement of noninteracting fermionic impurities:
Equilibrium, transient, and steady-state regimes [0.0]
We investigate entanglement between a single fermionic level and a fermionic bath in three distinct thermodynamic regimes.
The threshold coupling strength, at which entanglement appears, is shown to strongly depend on the bath bandwidth.
A steady-state entanglement is generated for arbitrarily weak system-bath couplings at a certain threshold voltage.
arXiv Detail & Related papers (2023-06-16T08:20:55Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Full counting statistics and coherences: fluctuation symmetry in heat
transport with the Unified quantum master equation [0.0]
We investigate statistics of energy currents through open quantum systems with nearly degenerate levels.
We find that maintaining coherences between nearly degenerate levels is essential for the properly capturing the current and its cumulants.
arXiv Detail & Related papers (2022-12-21T19:01:52Z) - Quantum coherence, correlations and nonclassical states in the two-qubit
Rabi model with parametric oscillator [0.0]
Quantum coherence and quantum correlations are studied in a strongly interacting system composed of two qubits and a parametric medium.
We employ the adiabatic approximation approach to analytically solve the system.
The reconstructed states are observed to be nearly pure generalized Bell states.
arXiv Detail & Related papers (2021-06-12T11:16:40Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Interplay between transport and quantum coherences in free fermionic
systems [58.720142291102135]
We study the quench dynamics in free fermionic systems.
In particular, we identify a function, that we dub emphtransition map, which takes the value of the stationary current as input and gives the value of correlation as output.
arXiv Detail & Related papers (2021-03-24T17:47:53Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.