Echocardiographic Image Quality Assessment Using Deep Neural Networks
- URL: http://arxiv.org/abs/2209.00959v1
- Date: Fri, 2 Sep 2022 11:35:20 GMT
- Title: Echocardiographic Image Quality Assessment Using Deep Neural Networks
- Authors: Robert B. Labs, Massoud Zolgharni, Jonathan P. Loo
- Abstract summary: Our aim was to analyse and define specific quality attributes mostly discussed by experts and present a fully trained convolutional neural network model for assessing such quality features objectively.
- Score: 0.966840768820136
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Echocardiography image quality assessment is not a trivial issue in
transthoracic examination. As the in vivo examination of heart structures
gained prominence in cardiac diagnosis, it has been affirmed that accurate
diagnosis of the left ventricle functions is hugely dependent on the quality of
echo images. Up till now, visual assessment of echo images is highly subjective
and requires specific definition under clinical pathologies. While poor-quality
images impair quantifications and diagnosis, the inherent variations in
echocardiographic image quality standards indicates the complexity faced among
different observers and provides apparent evidence for incoherent assessment
under clinical trials, especially with less experienced cardiologists. In this
research, our aim was to analyse and define specific quality attributes mostly
discussed by experts and present a fully trained convolutional neural network
model for assessing such quality features objectively.
Related papers
- Metrics that matter: Evaluating image quality metrics for medical image generation [48.85783422900129]
This study comprehensively assesses commonly used no-reference image quality metrics using brain MRI data.<n>We evaluate metric sensitivity to a range of challenges, including noise, distribution shifts, and, critically, morphological alterations designed to mimic clinically relevant inaccuracies.
arXiv Detail & Related papers (2025-05-12T01:57:25Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Explainable Image Quality Assessment for Medical Imaging [0.0]
Poor-quality medical images may lead to misdiagnosis.
We propose an explainable image quality assessment system and validate our idea on two different objectives.
We apply a variety of techniques to measure the faithfulness of the saliency detectors.
We show that NormGrad has significant gains over other saliency detectors by reaching a repeated Pointing Game score of 0.853 for Object-CXR and 0.611 for LVOT datasets.
arXiv Detail & Related papers (2023-03-25T14:18:39Z) - Automated Assessment of Transthoracic Echocardiogram Image Quality Using
Deep Neural Networks [2.5922360296344396]
Quality of acquired images are highly dependent on operator skills and are assessed subjectively.
This study is aimed at providing an objective assessment pipeline for echocardiogram image quality by defining a new set of domain-specific quality indicators.
arXiv Detail & Related papers (2022-09-02T12:15:14Z) - Image Quality Assessment for Magnetic Resonance Imaging [4.05136808278614]
Image quality assessment (IQA) algorithms aim to reproduce the human's perception of the image quality.
We use outputs of neural network models trained to solve problems relevant to MRI.
Seven trained radiologists assess distorted images, with their verdicts then correlated with 35 different image quality metrics.
arXiv Detail & Related papers (2022-03-15T11:52:29Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
We propose a novel factored attention and embedding model (termed FAE-Gen) for the unstructured-view topic-related ultrasound report generation.
The proposed FAE-Gen mainly consists of two modules, i.e., view-guided factored attention and topic-oriented factored embedding, which capture the homogeneous and heterogeneous morphological characteristic across different views.
arXiv Detail & Related papers (2022-03-12T15:24:03Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Artifact- and content-specific quality assessment for MRI with image
rulers [11.551528894727573]
In clinical practice MR images are often first seen by radiologists long after the scan.
If image quality is inadequate either patients have to return for an additional scan, or a suboptimal interpretation is rendered.
We propose a framework with multi-task CNN model trained with calibrated labels and inferenced with image rulers.
arXiv Detail & Related papers (2021-11-06T02:17:12Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z) - Deep Learning for Musculoskeletal Image Analysis [5.271212551436945]
This study presents how machinelearning, specifically deep learning methods, can be used for rapidand accurate image analysis of MRI scans.
We study machine learning classification of various abnormalities including meniscus and anterior cruciate ligament tears.
Using widely used convolutional neural network (CNN) based architectures, we comparatively evaluated the knee abnormality classification performances.
arXiv Detail & Related papers (2020-03-01T18:13:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.