Active learning-assisted neutron spectroscopy with log-Gaussian
processes
- URL: http://arxiv.org/abs/2209.00980v3
- Date: Fri, 21 Apr 2023 05:44:00 GMT
- Title: Active learning-assisted neutron spectroscopy with log-Gaussian
processes
- Authors: Mario Teixeira Parente, Georg Brandl, Christian Franz, Uwe Stuhr,
Marina Ganeva, Astrid Schneidewind
- Abstract summary: A number of scientific problems require searching for signals, which may be time consuming and inefficient if done manually.
Here, we describe a probabilistic active learning approach that not only runs autonomously, but can also directly provide locations for informative measurements.
The resulting benefits can be demonstrated on a real TAS experiment and a benchmark including numerous different excitations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neutron scattering experiments at three-axes spectrometers (TAS) investigate
magnetic and lattice excitations by measuring intensity distributions to
understand the origins of materials properties. The high demand and limited
availability of beam time for TAS experiments however raise the natural
question whether we can improve their efficiency and make better use of the
experimenter's time. In fact, there are a number of scientific problems that
require searching for signals, which may be time consuming and inefficient if
done manually due to measurements in uninformative regions. Here, we describe a
probabilistic active learning approach that not only runs autonomously, i.e.,
without human interference, but can also directly provide locations for
informative measurements in a mathematically sound and methodologically robust
way by exploiting log-Gaussian processes. Ultimately, the resulting benefits
can be demonstrated on a real TAS experiment and a benchmark including numerous
different excitations.
Related papers
- Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - GFlowNets for AI-Driven Scientific Discovery [74.27219800878304]
We present a new probabilistic machine learning framework called GFlowNets.
GFlowNets can be applied in the modeling, hypotheses generation and experimental design stages of the experimental science loop.
We argue that GFlowNets can become a valuable tool for AI-driven scientific discovery.
arXiv Detail & Related papers (2023-02-01T17:29:43Z) - A Machine Learning approach for correcting radial velocities using
physical observables [0.0]
Using simulations and real data, we investigate the capabilities of a Deep Neural Network approach to produce activity free Doppler measurements of stars.
We demonstrate that the RV-independent approach can drastically reduce spurious Doppler variability from known physical effects.
We observe a good match of the correction with the observed variability, but we also find that the noise reduction is not as good as in the simulations.
arXiv Detail & Related papers (2023-01-30T13:25:00Z) - Digital noise spectroscopy with a quantum sensor [57.53000001488777]
We introduce and experimentally demonstrate a quantum sensing protocol to sample and reconstruct the auto-correlation of a noise process.
Walsh noise spectroscopy method exploits simple sequences of spin-flip pulses to generate a complete basis of digital filters.
We experimentally reconstruct the auto-correlation function of the effective magnetic field produced by the nuclear-spin bath on the electronic spin of a single nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2022-12-19T02:19:35Z) - Spectroscopic data de-noising via training-set-free deep learning method [0.0]
We develop a de-noising method for extracting intrinsic spectral information without the need for a training set.
This is possible as our method leverages the self-correlation information of the spectra themselves.
It preserves the intrinsic energy band features and thus facilitates further analysis and processing.
arXiv Detail & Related papers (2022-10-19T12:04:35Z) - Provable RL with Exogenous Distractors via Multistep Inverse Dynamics [85.52408288789164]
Real-world applications of reinforcement learning (RL) require the agent to deal with high-dimensional observations such as those generated from a megapixel camera.
Prior work has addressed such problems with representation learning, through which the agent can provably extract endogenous, latent state information from raw observations.
However, such approaches can fail in the presence of temporally correlated noise in the observations.
arXiv Detail & Related papers (2021-10-17T15:21:27Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
Machine learning inspired variational methods provide a promising route towards scalable state characterization for quantum simulators.
We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states.
We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states greatly improves the quality of the reconstructed states.
arXiv Detail & Related papers (2020-07-31T17:25:12Z) - Heuristic machinery for thermodynamic studies of SU(N) fermions with
neural networks [1.1910997817688513]
We introduce a machinery by using machine learning analysis.
We use our machinery to guide the thermodynamic studies in the density profile of ultracold fermions interacting within SU($N$) spin symmetry.
Our machine learning framework shows a potential to validate theoretical descriptions of SU($N$) Fermi liquids.
arXiv Detail & Related papers (2020-06-25T02:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.