Self-Supervised Human Activity Recognition with Localized Time-Frequency
Contrastive Representation Learning
- URL: http://arxiv.org/abs/2209.00990v1
- Date: Fri, 26 Aug 2022 22:47:18 GMT
- Title: Self-Supervised Human Activity Recognition with Localized Time-Frequency
Contrastive Representation Learning
- Authors: Setareh Rahimi Taghanaki, Michael Rainbow and Ali Etemad
- Abstract summary: We propose a self-supervised learning solution for human activity recognition with smartphone accelerometer data.
We develop a model that learns strong representations from accelerometer signals, while reducing the model's reliance on class labels.
We evaluate the performance of the proposed solution on three datasets, namely MotionSense, HAPT, and HHAR.
- Score: 16.457778420360537
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we propose a self-supervised learning solution for human
activity recognition with smartphone accelerometer data. We aim to develop a
model that learns strong representations from accelerometer signals, in order
to perform robust human activity classification, while reducing the model's
reliance on class labels. Specifically, we intend to enable cross-dataset
transfer learning such that our network pre-trained on a particular dataset can
perform effective activity classification on other datasets (successive to a
small amount of fine-tuning). To tackle this problem, we design our solution
with the intention of learning as much information from the accelerometer
signals as possible. As a result, we design two separate pipelines, one that
learns the data in time-frequency domain, and the other in time-domain alone.
In order to address the issues mentioned above in regards to cross-dataset
transfer learning, we use self-supervised contrastive learning to train each of
these streams. Next, each stream is fine-tuned for final classification, and
eventually the two are fused to provide the final results. We evaluate the
performance of the proposed solution on three datasets, namely MotionSense,
HAPT, and HHAR, and demonstrate that our solution outperforms prior works in
this field. We further evaluate the performance of the method in learning
generalized features, by using MobiAct dataset for pre-training and the
remaining three datasets for the downstream classification task, and show that
the proposed solution achieves better performance in comparison with other
self-supervised methods in cross-dataset transfer learning.
Related papers
- Continual Learning for Multimodal Data Fusion of a Soft Gripper [1.0589208420411014]
A model trained on one data modality often fails when tested with a different modality.
We introduce a continual learning algorithm capable of incrementally learning different data modalities.
We evaluate the algorithm's effectiveness on a challenging custom multimodal dataset.
arXiv Detail & Related papers (2024-09-20T09:53:27Z) - Consistency Based Weakly Self-Supervised Learning for Human Activity Recognition with Wearables [1.565361244756411]
We describe a weakly self-supervised approach for recognizing human activities from sensor-based data.
We show that our approach can help the clustering algorithm achieve comparable performance in identifying and categorizing the underlying human activities.
arXiv Detail & Related papers (2024-07-29T06:29:21Z) - Incremental Self-training for Semi-supervised Learning [56.57057576885672]
IST is simple yet effective and fits existing self-training-based semi-supervised learning methods.
We verify the proposed IST on five datasets and two types of backbone, effectively improving the recognition accuracy and learning speed.
arXiv Detail & Related papers (2024-04-14T05:02:00Z) - SPOT: Scalable 3D Pre-training via Occupancy Prediction for Learning Transferable 3D Representations [76.45009891152178]
Pretraining-finetuning approach can alleviate the labeling burden by fine-tuning a pre-trained backbone across various downstream datasets as well as tasks.
We show, for the first time, that general representations learning can be achieved through the task of occupancy prediction.
Our findings will facilitate the understanding of LiDAR points and pave the way for future advancements in LiDAR pre-training.
arXiv Detail & Related papers (2023-09-19T11:13:01Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Multi-dataset Training of Transformers for Robust Action Recognition [75.5695991766902]
We study the task of robust feature representations, aiming to generalize well on multiple datasets for action recognition.
Here, we propose a novel multi-dataset training paradigm, MultiTrain, with the design of two new loss terms, namely informative loss and projection loss.
We verify the effectiveness of our method on five challenging datasets, Kinetics-400, Kinetics-700, Moments-in-Time, Activitynet and Something-something-v2.
arXiv Detail & Related papers (2022-09-26T01:30:43Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - Self-supervised Human Activity Recognition by Learning to Predict
Cross-Dimensional Motion [16.457778420360537]
We propose the use of self-supervised learning for human activity recognition with smartphone accelerometer data.
First, the representations of unlabeled input signals are learned by training a deep convolutional neural network to predict a segment of accelerometer values.
For this task, we add a number of fully connected layers to the end of the frozen network and train the added layers with labeled accelerometer signals to learn to classify human activities.
arXiv Detail & Related papers (2020-10-21T02:14:31Z) - Federated Self-Supervised Learning of Multi-Sensor Representations for
Embedded Intelligence [8.110949636804772]
Smartphones, wearables, and Internet of Things (IoT) devices produce a wealth of data that cannot be accumulated in a centralized repository for learning supervised models.
We propose a self-supervised approach termed textitscalogram-signal correspondence learning based on wavelet transform to learn useful representations from unlabeled sensor inputs.
We extensively assess the quality of learned features with our multi-view strategy on diverse public datasets, achieving strong performance in all domains.
arXiv Detail & Related papers (2020-07-25T21:59:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.