論文の概要: Improving the Accuracy and Robustness of CNNs Using a Deep CCA Neural
Data Regularizer
- arxiv url: http://arxiv.org/abs/2209.02582v1
- Date: Tue, 6 Sep 2022 15:40:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-07 12:22:07.841833
- Title: Improving the Accuracy and Robustness of CNNs Using a Deep CCA Neural
Data Regularizer
- Title(参考訳): ディープCCAニューラルデータ正規化器によるCNNの精度とロバスト性の向上
- Authors: Cassidy Pirlot, Richard C. Gerum, Cory Efird, Joel Zylberberg, Alona
Fyshe
- Abstract要約: 畳み込みニューラルネットワーク(CNN)がオブジェクト認識においてより正確になるにつれて、それらの表現は霊長類の視覚システムとよりよく似ている。
この問題に対処する以前の試みは、正規化法の制限により、精度が極端に向上した。
我々は,CNNのイメージ表現とサル視覚野との類似性を最適化するために,ディープ相関解析(DCCA)を用いた新しいCNN用ニューラルデータ正規化器を開発した。
- 参考スコア(独自算出の注目度): 2.026424957803652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As convolutional neural networks (CNNs) become more accurate at object
recognition, their representations become more similar to the primate visual
system. This finding has inspired us and other researchers to ask if the
implication also runs the other way: If CNN representations become more
brain-like, does the network become more accurate? Previous attempts to address
this question showed very modest gains in accuracy, owing in part to
limitations of the regularization method. To overcome these limitations, we
developed a new neural data regularizer for CNNs that uses Deep Canonical
Correlation Analysis (DCCA) to optimize the resemblance of the CNN's image
representations to that of the monkey visual cortex. Using this new neural data
regularizer, we see much larger performance gains in both classification
accuracy and within-super-class accuracy, as compared to the previous
state-of-the-art neural data regularizers. These networks are also more robust
to adversarial attacks than their unregularized counterparts. Together, these
results confirm that neural data regularization can push CNN performance
higher, and introduces a new method that obtains a larger performance boost.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)がオブジェクト認識においてより正確になるにつれて、それらの表現は霊長類の視覚システムとよりよく似ている。
CNN表現が脳に似たものになったら、ネットワークはもっと正確になるのでしょうか?
この問題に対処する以前の試みは、正規化法の制限により、精度が極端に向上した。
これらの制限を克服するため,我々は,CNNのイメージ表現とサル視覚野との類似性を最適化するために,ディープカノニカル相関解析(DCCA)を用いたCNNの新しいニューラルデータ正規化器を開発した。
この新しいニューラルデータ正規化器を用いることで、従来の最先端のニューラルデータ正規化器と比較して、分類精度とクラス内精度の両方において、はるかに大きなパフォーマンス向上が見られる。
これらのネットワークは、非正規のネットワークよりも敵の攻撃に対して強固である。
これらの結果から,ニューラルネットワークの正規化によってcnnのパフォーマンスが向上することを確認した。
関連論文リスト
- Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for
XOR Data [24.86314525762012]
勾配降下法により訓練されたReLU CNNがベイズ最適精度付近で実現できることを示す。
以上の結果から,CNNは高い相関性のある特徴が存在する場合でも,効率よくXOR問題を学習する能力を有することが明らかとなった。
論文 参考訳(メタデータ) (2023-10-03T11:31:37Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
ニューラルネット・プルーニングはディープ・ニューラル・ネットワーク(NN)の実証的ロバスト性を向上させることができることを示す。
実験の結果,NNを適切に刈り取ることで,その精度を8.2%まで向上させることができることがわかった。
さらに,認証された宝くじの存在が,従来の密集モデルの標準および認証された堅牢な精度に一致することを観察する。
論文 参考訳(メタデータ) (2022-06-15T05:48:51Z) - Lost Vibration Test Data Recovery Using Convolutional Neural Network: A
Case Study [0.0]
本稿では,アラモサキャニオン橋のCNNアルゴリズムを実構造として提案する。
3つの異なるCNNモデルは、1つと2つの故障したセンサーを予測するものとされた。
畳み込み層を追加することによりモデルの精度が向上した。
論文 参考訳(メタデータ) (2022-04-11T23:24:03Z) - Neural Architecture Dilation for Adversarial Robustness [56.18555072877193]
畳み込みニューラルネットワークの欠点は、敵の攻撃に弱いことである。
本稿では, 良好な精度を有する背骨CNNの対角的堅牢性を向上させることを目的とする。
最小限の計算オーバーヘッドの下では、拡張アーキテクチャはバックボーンCNNの標準的な性能と親和性が期待できる。
論文 参考訳(メタデータ) (2021-08-16T03:58:00Z) - Redundant representations help generalization in wide neural networks [71.38860635025907]
様々な最先端の畳み込みニューラルネットワークの最後に隠された層表現について検討する。
最後に隠された表現が十分に広ければ、そのニューロンは同一の情報を持つグループに分裂し、統計的に独立したノイズによってのみ異なる傾向にある。
論文 参考訳(メタデータ) (2021-06-07T10:18:54Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
本研究では, 実数値から, 最終予測分布上のバイナリネットワークへの誘導型学習パラダイムを提案する。
提案手法は,bnn上で5.515%の絶対利得で,単純なコントラスト学習ベースラインを向上できる。
提案手法は、単純なコントラスト学習ベースラインよりも大幅に改善され、多くの主流教師付きBNN手法に匹敵する。
論文 参考訳(メタデータ) (2021-02-17T18:59:28Z) - Self-Competitive Neural Networks [0.0]
ディープニューラルネットワーク(DNN)は、多くのアプリケーションにおける分類問題の精度を改善している。
DNNをトレーニングする際の課題の1つは、その正確性を高め、過度な適合に苦しむことを避けるために、豊富なデータセットによって供給される必要があることである。
近年,データ拡張手法の提案が盛んに行われている。
本稿では,各クラスのドメイン・オブ・アトラクション(DoAs)を洗練させるために,逆データを生成します。このアプローチでは,各段階において,プライマリデータと生成された逆データ(その段階まで)から学習したモデルを用いて,プライマリデータを複雑な方法で操作する。
論文 参考訳(メタデータ) (2020-08-22T12:28:35Z) - The shape and simplicity biases of adversarially robust ImageNet-trained
CNNs [9.707679445925516]
本稿では,AlexNet,GoogLeNet,ResNet-50モデルの汎用性を実現するための形状バイアスと内部機構について検討する。
興味深いことに、敵の訓練はCNNの「不正化」過程において隠れたニューロンに3つの単純バイアスを誘導する。
論文 参考訳(メタデータ) (2020-06-16T16:38:16Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
本稿では,ResNet型CNNが重要な関数クラスにおいて最小誤差率を達成可能であることを示す。
Barron と H'older のクラスに対する前述のタイプの CNN の近似と推定誤差率を導出する。
論文 参考訳(メタデータ) (2019-03-24T19:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。