論文の概要: Self-Competitive Neural Networks
- arxiv url: http://arxiv.org/abs/2008.09824v1
- Date: Sat, 22 Aug 2020 12:28:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 07:56:27.251659
- Title: Self-Competitive Neural Networks
- Title(参考訳): 自己競合型ニューラルネットワーク
- Authors: Iman Saberi, Fathiyeh Faghih
- Abstract要約: ディープニューラルネットワーク(DNN)は、多くのアプリケーションにおける分類問題の精度を改善している。
DNNをトレーニングする際の課題の1つは、その正確性を高め、過度な適合に苦しむことを避けるために、豊富なデータセットによって供給される必要があることである。
近年,データ拡張手法の提案が盛んに行われている。
本稿では,各クラスのドメイン・オブ・アトラクション(DoAs)を洗練させるために,逆データを生成します。このアプローチでは,各段階において,プライマリデータと生成された逆データ(その段階まで)から学習したモデルを用いて,プライマリデータを複雑な方法で操作する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNNs) have improved the accuracy of classification
problems in lots of applications. One of the challenges in training a DNN is
its need to be fed by an enriched dataset to increase its accuracy and avoid it
suffering from overfitting. One way to improve the generalization of DNNs is to
augment the training data with new synthesized adversarial samples. Recently,
researchers have worked extensively to propose methods for data augmentation.
In this paper, we generate adversarial samples to refine the Domains of
Attraction (DoAs) of each class. In this approach, at each stage, we use the
model learned by the primary and generated adversarial data (up to that stage)
to manipulate the primary data in a way that look complicated to the DNN. The
DNN is then retrained using the augmented data and then it again generates
adversarial data that are hard to predict for itself. As the DNN tries to
improve its accuracy by competing with itself (generating hard samples and then
learning them), the technique is called Self-Competitive Neural Network (SCNN).
To generate such samples, we pose the problem as an optimization task, where
the network weights are fixed and use a gradient descent based method to
synthesize adversarial samples that are on the boundary of their true labels
and the nearest wrong labels. Our experimental results show that data
augmentation using SCNNs can significantly increase the accuracy of the
original network. As an example, we can mention improving the accuracy of a CNN
trained with 1000 limited training data of MNIST dataset from 94.26% to 98.25%.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、多くのアプリケーションにおける分類問題の精度を改善している。
DNNをトレーニングする際の課題の1つは、その正確性を高め、過度な適合に苦しむことを避けるために、豊富なデータセットによって供給される必要があることである。
DNNの一般化を改善する一つの方法は、新しい合成逆数サンプルでトレーニングデータを増強することである。
近年,データ拡張手法の提案が盛んに行われている。
本稿では,各クラスのアトラクション領域(doas)を洗練するために,逆のサンプルを生成する。
このアプローチでは、各段階において、一次および生成された逆データ(その段階まで)によって学習されたモデルを用いて、DNNに複雑に見えるように一次データを操作する。
その後、dnnは拡張データを使用して再訓練され、また、予測が難しい逆データを生成する。
DNNが自分自身と競合する(ハードサンプルを生成して学習する)ことによって精度を向上しようとすると、この技術は自己競合ニューラルネットワーク(SCNN)と呼ばれる。
このようなサンプルを生成するために,ネットワークの重みを固定し,勾配降下に基づく手法を用いて,真のラベルと最も近いラベルの境界に位置する逆サンプルを合成する最適化タスクとして提案する。
実験の結果,scnnを用いたデータ拡張により,元のネットワークの精度が著しく向上することが示された。
例えば、1000の制限されたMNISTデータセットのトレーニングデータでトレーニングされたCNNの精度を94.26%から98.25%に向上させることに言及できる。
関連論文リスト
- ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
GAN(Generative Adversarial Networks)は通常、限られたトレーニングデータが利用できる場合、過度に適合する。
ScoreMixは、様々な画像合成タスクのための、新しくスケーラブルなデータ拡張手法である。
論文 参考訳(メタデータ) (2022-10-27T02:55:15Z) - Shift-Robust GNNs: Overcoming the Limitations of Localized Graph
Training data [52.771780951404565]
Shift-Robust GNN (SR-GNN) は、バイアス付きトレーニングデータとグラフの真の推論分布の分布差を考慮に入れた設計である。
SR-GNNが他のGNNベースラインを精度良く上回り、バイアス付きトレーニングデータから生じる負の効果の少なくとも40%を排除していることを示す。
論文 参考訳(メタデータ) (2021-08-02T18:00:38Z) - Evaluating Deep Neural Network Ensembles by Majority Voting cum
Meta-Learning scheme [3.351714665243138]
新しいデータインスタンスのために,7つの独立したディープニューラルネットワーク(DNN)のアンサンブルを提案する。
残りのサンプルからブートストラップサンプリングによってデータの7分の1を削除して補充する。
この論文のすべてのアルゴリズムは5つのベンチマークデータセットでテストされている。
論文 参考訳(メタデータ) (2021-05-09T03:10:56Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
本研究では, 実数値から, 最終予測分布上のバイナリネットワークへの誘導型学習パラダイムを提案する。
提案手法は,bnn上で5.515%の絶対利得で,単純なコントラスト学習ベースラインを向上できる。
提案手法は、単純なコントラスト学習ベースラインよりも大幅に改善され、多くの主流教師付きBNN手法に匹敵する。
論文 参考訳(メタデータ) (2021-02-17T18:59:28Z) - Deep Time Delay Neural Network for Speech Enhancement with Full Data
Learning [60.20150317299749]
本稿では,全データ学習による音声強調のためのディープタイム遅延ニューラルネットワーク(TDNN)を提案する。
トレーニングデータを完全に活用するために,音声強調のための完全なデータ学習手法を提案する。
論文 参考訳(メタデータ) (2020-11-11T06:32:37Z) - ASFGNN: Automated Separated-Federated Graph Neural Network [17.817867271722093]
本稿では,ASFGNN学習パラダイムを提案する。
我々は,ベンチマークデータセットの実験を行い,ASFGNNが有望なフェデレーションGNNよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-06T09:21:34Z) - Temporal Calibrated Regularization for Robust Noisy Label Learning [60.90967240168525]
ディープニューラルネットワーク(DNN)は、大規模な注釈付きデータセットの助けを借りて、多くのタスクで大きな成功を収めている。
しかし、大規模なデータのラベル付けは非常にコストがかかりエラーが発生しやすいため、アノテーションの品質を保証することは困難である。
本稿では,従来のラベルと予測を併用したTCR(Temporal Calibrated Regularization)を提案する。
論文 参考訳(メタデータ) (2020-07-01T04:48:49Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - Passive Batch Injection Training Technique: Boosting Network Performance
by Injecting Mini-Batches from a different Data Distribution [39.8046809855363]
この研究は、元の入力データとは異なる分布から追加のデータを利用するディープニューラルネットワークの新しいトレーニング手法を提案する。
私たちの知る限りでは、畳み込みニューラルネットワーク(CNN)のトレーニングを支援するために、異なるデータ分散を利用する最初の研究である。
論文 参考訳(メタデータ) (2020-06-08T08:17:32Z) - One Versus all for deep Neural Network Incertitude (OVNNI)
quantification [12.734278426543332]
本稿では,データの疫学的不確実性を容易に定量化するための新しい手法を提案する。
本手法は,1つのクラス対他のクラス(OVA)を分類するために訓練されたDNNのアンサンブルの予測と,オール対オール(AVA)分類を実行するために訓練された標準DNNの予測とを混合して構成する。
論文 参考訳(メタデータ) (2020-06-01T14:06:12Z) - Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike
Timing Dependent Backpropagation [10.972663738092063]
Spiking Neural Networks(SNN)は非同期離散イベント(スパイク)で動作する
本稿では,深層SNNのための計算効率のよいトレーニング手法を提案する。
我々は、SNN上のImageNetデータセットの65.19%のトップ1精度を250タイムステップで達成し、同様の精度で変換されたSNNに比べて10倍高速である。
論文 参考訳(メタデータ) (2020-05-04T19:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。