Spatiotemporal Cardiac Statistical Shape Modeling: A Data-Driven
Approach
- URL: http://arxiv.org/abs/2209.02736v1
- Date: Tue, 6 Sep 2022 18:00:45 GMT
- Title: Spatiotemporal Cardiac Statistical Shape Modeling: A Data-Driven
Approach
- Authors: Jadie Adams and Nawazish Khan and Alan Morris and Shireen Elhabian
- Abstract summary: Particle-based shape modeling (PSM) is a data-driven approach that captures population-level shape variations.
This paper proposes a data-driven approach inspired by the PSM method to learn population-level temporal shape changes directly from shape data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical investigations of anatomy's structural changes over time could
greatly benefit from population-level quantification of shape, or
spatiotemporal statistic shape modeling (SSM). Such a tool enables
characterizing patient organ cycles or disease progression in relation to a
cohort of interest. Constructing shape models requires establishing a
quantitative shape representation (e.g., corresponding landmarks).
Particle-based shape modeling (PSM) is a data-driven SSM approach that captures
population-level shape variations by optimizing landmark placement. However, it
assumes cross-sectional study designs and hence has limited statistical power
in representing shape changes over time. Existing methods for modeling
spatiotemporal or longitudinal shape changes require predefined shape atlases
and pre-built shape models that are typically constructed cross-sectionally.
This paper proposes a data-driven approach inspired by the PSM method to learn
population-level spatiotemporal shape changes directly from shape data. We
introduce a novel SSM optimization scheme that produces landmarks that are in
correspondence both across the population (inter-subject) and across
time-series (intra-subject). We apply the proposed method to 4D cardiac data
from atrial-fibrillation patients and demonstrate its efficacy in representing
the dynamic change of the left atrium. Furthermore, we show that our method
outperforms an image-based approach for spatiotemporal SSM with respect to a
generative time-series model, the Linear Dynamical System (LDS). LDS fit using
a spatiotemporal shape model optimized via our approach provides better
generalization and specificity, indicating it accurately captures the
underlying time-dependency.
Related papers
- Optimization-Driven Statistical Models of Anatomies using Radial Basis Function Shape Representation [3.743399165184124]
Particle-based shape modeling is a popular approach to quantify shape variability in populations of anatomies.
We propose an adaptation of this method using a traditional optimization approach that allows more precise control over the desired characteristics of models.
We demonstrate the efficacy of the proposed approach to state-of-the-art methods on two real datasets and justify our choice of losses empirically.
arXiv Detail & Related papers (2024-11-24T15:43:01Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeIT represents an anatomical structure with an implicit template field shared within the same category.
It ensures the implicit template field generates valid templates by strengthening the constraint of the correspondence between the instance shape and the template shape.
A template Interaction Module is introduced to reconstruct unseen shapes by interacting the valid template shapes with the instance-wise latent codes.
arXiv Detail & Related papers (2023-12-11T07:09:32Z) - ADASSM: Adversarial Data Augmentation in Statistical Shape Models From
Images [0.8192907805418583]
This paper introduces a novel strategy for on-the-fly data augmentation for the Image-to-SSM framework by leveraging data-dependent noise generation or texture augmentation.
Our approach achieves improved accuracy by encouraging the model to focus on the underlying geometry rather than relying solely on pixel values.
arXiv Detail & Related papers (2023-07-06T20:21:12Z) - Image2SSM: Reimagining Statistical Shape Models from Images with Radial
Basis Functions [4.422330219605964]
We propose Image2SSM, a novel deep-learning-based approach for statistical shape modeling.
Image2SSM learns a radial-basis-function (RBF)-based representation of shapes directly from images.
It can characterize populations of biological structures of interest by constructing statistical landmark-based shape models of ensembles of anatomical shapes.
arXiv Detail & Related papers (2023-05-19T18:08:10Z) - Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy [0.0]
We propose Mesh2SSM, a new approach that leverages unsupervised, permutation-invariant representation learning to estimate how to deform a template point cloud to subject-specific meshes.
Mesh2SSM can also learn a population-specific template, reducing any bias due to template selection.
arXiv Detail & Related papers (2023-05-13T00:03:59Z) - Diffusion Deformable Model for 4D Temporal Medical Image Generation [47.03842361418344]
Temporal volume images with 3D+t (4D) information are often used in medical imaging to statistically analyze temporal dynamics or capture disease progression.
We present a novel deep learning model that generates intermediate temporal volumes between source and target volumes.
arXiv Detail & Related papers (2022-06-27T13:37:57Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Dynamic multi feature-class Gaussian process models [0.0]
This study presents a statistical modelling method for automatic learning of shape, pose and intensity features in medical images.
A DMFC-GPM is a Gaussian process (GP)-based model with a shared latent space that encodes linear and non-linear variation.
The model performance results suggest that this new modelling paradigm is robust, accurate, accessible, and has potential applications.
arXiv Detail & Related papers (2021-12-08T15:12:47Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Benchmarking off-the-shelf statistical shape modeling tools in clinical
applications [53.47202621511081]
We systematically assess the outcome of widely used, state-of-the-art SSM tools.
We propose validation frameworks for anatomical landmark/measurement inference and lesion screening.
ShapeWorks and Deformetrica shape models are found to capture clinically relevant population-level variability.
arXiv Detail & Related papers (2020-09-07T03:51:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.