Optimization-Driven Statistical Models of Anatomies using Radial Basis Function Shape Representation
- URL: http://arxiv.org/abs/2411.15882v1
- Date: Sun, 24 Nov 2024 15:43:01 GMT
- Title: Optimization-Driven Statistical Models of Anatomies using Radial Basis Function Shape Representation
- Authors: Hong Xu, Shireen Y. Elhabian,
- Abstract summary: Particle-based shape modeling is a popular approach to quantify shape variability in populations of anatomies.
We propose an adaptation of this method using a traditional optimization approach that allows more precise control over the desired characteristics of models.
We demonstrate the efficacy of the proposed approach to state-of-the-art methods on two real datasets and justify our choice of losses empirically.
- Score: 3.743399165184124
- License:
- Abstract: Particle-based shape modeling (PSM) is a popular approach to automatically quantify shape variability in populations of anatomies. The PSM family of methods employs optimization to automatically populate a dense set of corresponding particles (as pseudo landmarks) on 3D surfaces to allow subsequent shape analysis. A recent deep learning approach leverages implicit radial basis function representations of shapes to better adapt to the underlying complex geometry of anatomies. Here, we propose an adaptation of this method using a traditional optimization approach that allows more precise control over the desired characteristics of models by leveraging both an eigenshape and a correspondence loss. Furthermore, the proposed approach avoids using a black-box model and allows more freedom for particles to navigate the underlying surfaces, yielding more informative statistical models. We demonstrate the efficacy of the proposed approach to state-of-the-art methods on two real datasets and justify our choice of losses empirically.
Related papers
- Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
We introduce a hybrid method that fine-tunes cutting-edge diffusion models by optimizing reward models through RL.
We demonstrate the capability of our approach to outperform the best designs in offline data, leveraging the extrapolation capabilities of reward models.
arXiv Detail & Related papers (2024-05-30T03:57:29Z) - Particle-Based Shape Modeling for Arbitrary Regions-of-Interest [3.743399165184124]
We propose an extension to particle-based shape modeling (PSM), a widely used SSM framework, to allow shape modeling to arbitrary regions of interest.
To address these shortcomings, we use mesh fields to define free-form constraints, which allow for delimiting arbitrary regions of interest on shape surfaces.
We demonstrate the effectiveness of this method on a challenging synthetic dataset and two medical datasets.
arXiv Detail & Related papers (2023-12-29T20:24:20Z) - Flexible Isosurface Extraction for Gradient-Based Mesh Optimization [65.76362454554754]
This work considers gradient-based mesh optimization, where we iteratively optimize for a 3D surface mesh by representing it as the isosurface of a scalar field.
We introduce FlexiCubes, an isosurface representation specifically designed for optimizing an unknown mesh with respect to geometric, visual, or even physical objectives.
arXiv Detail & Related papers (2023-08-10T06:40:19Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
We propose two deep learning models that fully automate shape parameterization for aerodynamic shape optimization.
Both models are optimized to parameterize via deep geometric learning to embed human prior knowledge into learned geometric patterns.
We perform shape optimization experiments on 2D airfoils and discuss the applicable scenarios for the two models.
arXiv Detail & Related papers (2023-05-03T13:45:40Z) - Data-driven reduced-order modelling for blood flow simulations with
geometry-informed snapshots [0.0]
A data-driven surrogate model is proposed for the efficient prediction of blood flow simulations on similar but distinct domains.
A non-intrusive reduced-order model for geometrical parameters is constructed using proper decomposition.
A radial basis function interpolator is trained for predicting the reduced coefficients of the reduced-order model.
arXiv Detail & Related papers (2023-02-21T21:18:17Z) - Probabilistic Registration for Gaussian Process 3D shape modelling in
the presence of extensive missing data [63.8376359764052]
We propose a shape fitting/registration method based on a Gaussian Processes formulation, suitable for shapes with extensive regions of missing data.
Experiments are conducted both for a 2D small dataset with diverse transformations and a 3D dataset of ears.
arXiv Detail & Related papers (2022-03-26T16:48:27Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
We derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups.
We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment.
arXiv Detail & Related papers (2022-02-01T21:21:56Z) - Dynamic multi feature-class Gaussian process models [0.0]
This study presents a statistical modelling method for automatic learning of shape, pose and intensity features in medical images.
A DMFC-GPM is a Gaussian process (GP)-based model with a shared latent space that encodes linear and non-linear variation.
The model performance results suggest that this new modelling paradigm is robust, accurate, accessible, and has potential applications.
arXiv Detail & Related papers (2021-12-08T15:12:47Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z) - Functional additive regression on shape and form manifolds of planar
curves [0.0]
We define shape and form as equivalence classes under translation, rotation and -- for shapes -- also scale.
We extend generalized additive regression to models for the shape/form of planar curves or landmark.
arXiv Detail & Related papers (2021-09-06T17:43:32Z) - Dynamic multi-object Gaussian process models: A framework for
data-driven functional modelling of human joints [0.0]
A principled and robust way to combine shape and pose features has been illusive due to three main issues.
We propose a new framework for dynamic multi-object statistical modelling framework for the analysis of human joints.
The framework affords an efficient generative dynamic multi-object modelling platform for biological joints.
arXiv Detail & Related papers (2020-01-22T07:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.