論文の概要: Not All Instances Contribute Equally: Instance-adaptive Class
Representation Learning for Few-Shot Visual Recognition
- arxiv url: http://arxiv.org/abs/2209.03034v1
- Date: Wed, 7 Sep 2022 10:00:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-08 12:36:08.795927
- Title: Not All Instances Contribute Equally: Instance-adaptive Class
Representation Learning for Few-Shot Visual Recognition
- Title(参考訳): すべてのインスタンスが等しく寄与する訳ではない:Few-Shot視覚認識のためのインスタンス適応型クラス表現学習
- Authors: Mengya Han, Yibing Zhan, Yong Luo, Bo Du, Han Hu, Yonggang Wen, and
Dacheng Tao
- Abstract要約: 少数ショットの視覚認識は、いくつかのラベル付きインスタンスから新しい視覚概念を認識することを指す。
本稿では,数ショットの視覚認識を実現するために,インスタンス適応型クラス表現学習ネットワーク(ICRL-Net)と呼ばれる新しいメトリックベースのメタラーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 94.04041301504567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot visual recognition refers to recognize novel visual concepts from a
few labeled instances. Many few-shot visual recognition methods adopt the
metric-based meta-learning paradigm by comparing the query representation with
class representations to predict the category of query instance. However,
current metric-based methods generally treat all instances equally and
consequently often obtain biased class representation, considering not all
instances are equally significant when summarizing the instance-level
representations for the class-level representation. For example, some instances
may contain unrepresentative information, such as too much background and
information of unrelated concepts, which skew the results. To address the above
issues, we propose a novel metric-based meta-learning framework termed
instance-adaptive class representation learning network (ICRL-Net) for few-shot
visual recognition. Specifically, we develop an adaptive instance revaluing
network with the capability to address the biased representation issue when
generating the class representation, by learning and assigning adaptive weights
for different instances according to their relative significance in the support
set of corresponding class. Additionally, we design an improved bilinear
instance representation and incorporate two novel structural losses, i.e.,
intra-class instance clustering loss and inter-class representation
distinguishing loss, to further regulate the instance revaluation process and
refine the class representation. We conduct extensive experiments on four
commonly adopted few-shot benchmarks: miniImageNet, tieredImageNet, CIFAR-FS,
and FC100 datasets. The experimental results compared with the state-of-the-art
approaches demonstrate the superiority of our ICRL-Net.
- Abstract(参考訳): わずかなショットの視覚認識は、ラベル付きインスタンスから新しい視覚概念を認識することを指す。
クエリ表現とクラス表現を比較して、クエリインスタンスのカテゴリを予測することで、メトリックベースのメタラーニングパラダイムを採用する。
しかし、現在のメートル法に基づく手法は一般に全てのインスタンスを等しく扱い、従って偏りのあるクラス表現を得ることが多い。
例えば、背景や無関係な概念に関する情報が多すぎるなど、結果が歪むような非表現的な情報を含む場合もある。
そこで本研究では,インスタンス適応型クラス表現学習ネットワーク(icrl-net)と呼ばれる,数発視覚認識のための新しいメトリクスベースメタ学習フレームワークを提案する。
具体的には,クラス表現生成時のバイアス付き表現問題に対処する能力を備えた適応型インスタンス評価ネットワークを開発し,対応するクラスのサポートセットにおける相対的重要性に応じて,異なるインスタンスに対する適応型重みを学習し割り当てる。
さらに,改良されたバイリニアインスタンス表現の設計を行い,クラス内インスタンスクラスタリング損失とクラス間識別損失という2つの新しい構造的損失を組み込んで,インスタンス再評価プロセスをさらに調整し,クラス表現を洗練する。
我々は,MiniImageNet, tieredImageNet, CIFAR-FS, FC100データセットという,広く採用されている4つのスクリーンショットベンチマークについて広範な実験を行った。
ICRL-Netの優位性を,最先端のアプローチと比較した実験結果から検証した。
関連論文リスト
- Soft Neighbors are Positive Supporters in Contrastive Visual
Representation Learning [35.53729744330751]
コントラスト学習法は、あるインスタンスと他のインスタンスのビューを比較して視覚エンコーダを訓練する。
このバイナリインスタンス識別は、自己教師付き学習における特徴表現を改善するために広範囲に研究されている。
本稿では、インスタンス識別フレームワークを再考し、異なるサンプル間の相関を測定するのに不十分なバイナリインスタンスラベルを見つける。
論文 参考訳(メタデータ) (2023-03-30T04:22:07Z) - Semantic Representation and Dependency Learning for Multi-Label Image
Recognition [76.52120002993728]
本稿では,各カテゴリのカテゴリ固有のセマンティック表現を学習するための,新しい,効果的なセマンティック表現と依存性学習(SRDL)フレームワークを提案する。
具体的には,カテゴリー別注意領域(CAR)モジュールを設計し,チャネル/空間的注意行列を生成してモデルを導出する。
また、カテゴリ間のセマンティック依存を暗黙的に学習するオブジェクト消去(OE)モジュールを設計し、セマンティック認識領域を消去する。
論文 参考訳(メタデータ) (2022-04-08T00:55:15Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
少数のラベル付きサンプルを与えられた未確認のクラスに適応できるモデルを学ぶことを目的としている。
最近のアプローチでは、特徴抽出器を事前訓練し、その後、エピソードなメタラーニングのための微調整を行う。
本研究は, 複数ショットの分類において, 横断的および再重み付き識別機能を実現するための戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T06:14:51Z) - Weakly Supervised Contrastive Learning [68.47096022526927]
この問題に対処するために,弱教師付きコントラスト学習フレームワーク(WCL)を導入する。
WCLはResNet50を使用して65%と72%のImageNet Top-1の精度を実現している。
論文 参考訳(メタデータ) (2021-10-10T12:03:52Z) - Train a One-Million-Way Instance Classifier for Unsupervised Visual
Representation Learning [45.510042484456854]
本稿では、パラメトリックなインスタンスレベルの計算を用いて、データセット内のすべての画像を識別するプリテキストタスクを備えた、単純な教師なし視覚表現学習法を提案する。
全体的なフレームワークは教師付き分類モデルのレプリカであり、セマンティッククラス(犬、鳥、船など)はインスタンスIDに置き換えられる。
数千のセマンティックラベルから数百万のインスタンスラベルへの分類タスクのスケールアップは、1)大規模ソフトマックス分類器、2)インスタンスサンプルの頻度の低い訪問による緩やかな収束、3)ノイズの多い大量の負のクラスなど、特定の課題をもたらす。
論文 参考訳(メタデータ) (2021-02-09T14:44:18Z) - Adaptive Prototypical Networks with Label Words and Joint Representation
Learning for Few-Shot Relation Classification [17.237331828747006]
本研究は,少ショット関係分類(FSRC)に焦点を当てる。
クラスプロトタイプの表現にラベル単語を追加するための適応的混合機構を提案する。
FewRelでは、異なる数ショット(FS)設定で実験が行われた。
論文 参考訳(メタデータ) (2021-01-10T11:25:42Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
ディープワンクラス分類のための2段階フレームワークを提案する。
まず,一級データから自己教師付き表現を学習し,学習した表現に基づいて一級分類器を構築する。
実験では、視覚領域の1クラス分類ベンチマークで最先端の性能を示す。
論文 参考訳(メタデータ) (2020-11-04T23:33:41Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification [91.67977602992657]
本稿では,従来の特徴適応手法よりもシンプルかつ効果的である特徴選択に基づく新しい戦略を提案する。
このような特徴の上に構築された単純な非パラメトリック分類器は高い精度を示し、訓練中に見たことのない領域に一般化する。
論文 参考訳(メタデータ) (2020-03-20T15:44:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。