論文の概要: An Assessment Tool for Academic Research Managers in the Third World
- arxiv url: http://arxiv.org/abs/2209.03199v1
- Date: Wed, 7 Sep 2022 14:59:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-08 12:55:09.069053
- Title: An Assessment Tool for Academic Research Managers in the Third World
- Title(参考訳): 第三世界の学術研究管理者のための評価ツール
- Authors: Fernando Delbianco, Andres Fioriti, Fernando Tohm\'e
- Abstract要約: 一方のベースにあるデータが、もう一方のインデックスを推測するためにどのように使用できるかを示す。
SCOPUSの情報はWebから自由に取り除くことができるので、このアプローチは出版物のインパクトファクターを自由に推論することができる。
- 参考スコア(独自算出の注目度): 125.99533416395765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The academic evaluation of the publication record of researchers is relevant
for identifying talented candidates for promotion and funding. A key tool for
this is the use of the indexes provided by Web of Science and SCOPUS, costly
databases that sometimes exceed the possibilities of academic institutions in
many parts of the world. We show here how the data in one of the bases can be
used to infer the main index of the other one. Methods of data analysis used in
Machine Learning allow us to select just a few of the hundreds of variables in
a database, which later are used in a panel regression, yielding a good
approximation to the main index in the other database. Since the information of
SCOPUS can be freely scraped from the Web, this approach allows to infer for
free the Impact Factor of publications, the main index used in research
assessments around the globe.
- Abstract(参考訳): 研究者の出版記録の学術的評価は、昇進と資金提供の有能な候補者を特定することに関係している。
このための重要なツールは、Web of ScienceとSCOPUSが提供するインデックスを使用することである。
ここでは、一方のベースにあるデータが、他方のメインインデックスを推測するためにどのように使用できるかを示す。
機械学習で使用されるデータ分析の方法は、データベース内の数百の変数のうち、わずか数個を選択できる。
SCOPUSの情報はWebから自由に取り除くことができるので、この手法は、世界中の研究評価で使われる主要な指標である出版物のインパクトファクターを自由に推測することができる。
関連論文リスト
- RelBench: A Benchmark for Deep Learning on Relational Databases [78.52438155603781]
本稿では,グラフニューラルネットワークを用いたデータベース上でタスクを解くための公開ベンチマークであるRelBenchを紹介する。
私たちはRelBenchを使って、ディープラーニングインフラストラクチャに関する初の総合的な研究を行っています。
RDLは、人間の作業量を1桁以上削減しながら、より良く学習する。
論文 参考訳(メタデータ) (2024-07-29T14:46:13Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
我々は、データ駆動探索の多段階プロセスを形式化する最初の包括的なベンチマークであるDiscoveryBenchを紹介する。
我々のベンチマークには、社会学や工学などの6つの分野にまたがる264のタスクが含まれている。
私たちのベンチマークでは、自律的なデータ駆動型発見の課題を説明し、コミュニティが前進するための貴重なリソースとして役立ちます。
論文 参考訳(メタデータ) (2024-07-01T18:58:22Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - A Survey of Learned Indexes for the Multi-dimensional Space [7.574538354949901]
本調査は学習した多次元インデックス構造に焦点を当てる。
本稿では,各学習した多次元指標を分類・分類する分類法を提案する。
我々は、この新興かつ活発な分野における、いくつかのオープンな課題と今後の研究方向性を強調します。
論文 参考訳(メタデータ) (2024-03-11T06:32:32Z) - Query of CC: Unearthing Large Scale Domain-Specific Knowledge from
Public Corpora [104.16648246740543]
大規模言語モデルに基づく効率的なデータ収集手法を提案する。
この方法は、大きな言語モデルを通してシード情報をブートストラップし、公開コーパスから関連データを検索する。
特定のドメインに関する知識関連のデータを収集するだけでなく、潜在的な推論手順でデータを抽出する。
論文 参考訳(メタデータ) (2024-01-26T03:38:23Z) - All Data on the Table: Novel Dataset and Benchmark for Cross-Modality
Scientific Information Extraction [39.05577374775964]
本稿では,テキスト中のエンティティをアノテートする半教師付きパイプラインと,テーブル内のエンティティとリレーションを反復的に提案する。
我々は,高品質なベンチマーク,大規模コーパス,半教師付きアノテーションパイプラインなど,科学コミュニティのための新たなリソースをリリースする。
論文 参考訳(メタデータ) (2023-11-14T14:22:47Z) - Diverse Community Data for Benchmarking Data Privacy Algorithms [0.2999888908665658]
CRC(Collaborative Research Cycle)は、NIST(National Institute of Standards and Technology)のベンチマークプログラムである。
識別アルゴリズムは、他のデータ分析や機械学習アプリケーションに影響を与えるバイアスやプライバシーの問題に弱い。
本稿は,多様な集団間の関係と公平な特定の課題について,CRCの4つの貢献を要約する。
論文 参考訳(メタデータ) (2023-06-20T17:18:51Z) - A Pluggable Learned Index Method via Sampling and Gap Insertion [48.900186573181735]
データベースインデックスは、データ検索を促進し、現実世界のシステムにおける幅広いアプリケーションに役立つ。
近年,隠れて有用なデータ分布を学習するために,learning indexという新しいインデックスが提案されている。
学習指標の学習効率と学習効率を高めるための2つの一般的なテクニックとプラグイン可能なテクニックを研究します。
論文 参考訳(メタデータ) (2021-01-04T07:17:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。