論文の概要: Concept-modulated model-based offline reinforcement learning for rapid
generalization
- arxiv url: http://arxiv.org/abs/2209.03207v1
- Date: Wed, 7 Sep 2022 15:06:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-08 12:47:26.908846
- Title: Concept-modulated model-based offline reinforcement learning for rapid
generalization
- Title(参考訳): 高速一般化のための概念変調モデルに基づくオフライン強化学習
- Authors: Nicholas A. Ketz, Praveen K. Pilly
- Abstract要約: 本研究では,環境概念や非教師付き手法で学習したダイナミックスに制約されたシナリオを自己生成する手法を提案する。
特に、エージェントの環境の内部モデルは、エージェントの動作に敏感な入力空間の低次元概念表現に条件付けされる。
モデルベースおよびモデルフリーアプローチと比較して,特定の障害事例の異なるインスタンスに対するワンショット一般化の劇的な改善と,同様のバリエーションに対するゼロショット一般化を示す。
- 参考スコア(独自算出の注目度): 5.512991103610139
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The robustness of any machine learning solution is fundamentally bound by the
data it was trained on. One way to generalize beyond the original training is
through human-informed augmentation of the original dataset; however, it is
impossible to specify all possible failure cases that can occur during
deployment. To address this limitation we combine model-based reinforcement
learning and model-interpretability methods to propose a solution that
self-generates simulated scenarios constrained by environmental concepts and
dynamics learned in an unsupervised manner. In particular, an internal model of
the agent's environment is conditioned on low-dimensional concept
representations of the input space that are sensitive to the agent's actions.
We demonstrate this method within a standard realistic driving simulator in a
simple point-to-point navigation task, where we show dramatic improvements in
one-shot generalization to different instances of specified failure cases as
well as zero-shot generalization to similar variations compared to model-based
and model-free approaches.
- Abstract(参考訳): 機械学習ソリューションのロバスト性は、トレーニングされたデータによって基本的に拘束される。
オリジナルのトレーニングを超えて一般化する1つの方法は、オリジナルのデータセットの人為的な拡張によるものであるが、デプロイメント中に起こりうるすべての障害ケースを特定することは不可能である。
この制限に対処するために,モデルベース強化学習法とモデル解釈可能性法を組み合わせて,環境概念や非教師なしで学習したダイナミクスに制約されたシミュレーションシナリオを自己生成する解を提案する。
特に、エージェントの環境の内部モデルは、エージェントの動作に敏感な入力空間の低次元概念表現に条件付けされる。
そこで本研究では,特定の故障事例の異なるインスタンスに対するワンショット一般化や,モデルベースやモデルフリーのアプローチと比較して,同様のバリエーションに対するゼロショット一般化が劇的に改善されていることを示す。
関連論文リスト
- Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
本稿では、利用可能なデータからシステムダイナミクスを推定し、仮想モデルロールアウトにおけるポリシー最適化を行うモデルベース強化学習アルゴリズムについて考察する。
このアプローチは、実際のシステムで破滅的な失敗を引き起こす可能性のあるモデルエラーを悪用することに対して脆弱である。
D4RLベンチマークの1つのよく校正された自己回帰モデルにより、より良い性能が得られることを示す。
論文 参考訳(メタデータ) (2024-02-05T10:18:15Z) - ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
対照的な教師なし学習と介入不変正規化器を用いて不変特徴を学習する世界モデルを提案する。
提案手法は,現状のモデルベースおよびモデルフリーのRL法より優れ,iGibsonベンチマークで評価された分布外ナビゲーションタスクを大幅に改善する。
論文 参考訳(メタデータ) (2023-12-14T15:53:07Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
本稿では,事前学習したテキスト・画像拡散モデルにカプセル化された事前知識を視覚的超解像に活用するための新しいアプローチを提案する。
時間認識エンコーダを用いることで、事前学習した合成モデルを変更することなく、有望な復元結果が得られる。
論文 参考訳(メタデータ) (2023-05-11T17:55:25Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Deciding What to Model: Value-Equivalent Sampling for Reinforcement
Learning [21.931580762349096]
本稿では,エージェントが真のモデルの代わりにターゲットにできるような,ほぼ等価でロッキーな環境圧縮を計算するアルゴリズムを提案する。
有限水平, エピソディックな逐次決定問題を解くアルゴリズムに対して, 情報理論的, ベイズ的後悔を証明した。
論文 参考訳(メタデータ) (2022-06-04T23:36:38Z) - Dream to Explore: Adaptive Simulations for Autonomous Systems [3.0664963196464448]
ベイズ的非パラメトリック法を適用し,力学系制御の学習に挑戦する。
ガウス過程を用いて潜在世界力学を探索することにより、強化学習で観測される一般的なデータ効率の問題を緩和する。
本アルゴリズムは,ログの変動的下界を最適化することにより,世界モデルと政策を共同で学習する。
論文 参考訳(メタデータ) (2021-10-27T04:27:28Z) - Generalized Real-World Super-Resolution through Adversarial Robustness [107.02188934602802]
本稿では,実世界のSRに取り組むために,敵攻撃の一般化能力を活用したロバスト超解法を提案する。
我々の新しいフレームワークは、現実世界のSR手法の開発においてパラダイムシフトをもたらす。
単一のロバストモデルを使用することで、実世界のベンチマークで最先端の特殊な手法より優れています。
論文 参考訳(メタデータ) (2021-08-25T22:43:20Z) - Model-Invariant State Abstractions for Model-Based Reinforcement
Learning [54.616645151708994]
textitmodel-invarianceという新しいタイプの状態抽象化を紹介します。
これにより、状態変数の見当たらない値の新しい組み合わせへの一般化が可能になる。
このモデル不変状態抽象化を通じて最適なポリシーを学習できることを実証する。
論文 参考訳(メタデータ) (2021-02-19T10:37:54Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
本研究では,不正確なモデル推定による実データとシミュレーションデータのギャップを埋めて,より良いポリシ最適化を実現する方法について検討する。
本稿では,教師なしモデル適応を導入したモデルベース強化学習フレームワークAMPOを提案する。
提案手法は,一連の連続制御ベンチマークタスクにおけるサンプル効率の観点から,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-10-19T14:19:42Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。