Seeking Interpretability and Explainability in Binary Activated Neural Networks
- URL: http://arxiv.org/abs/2209.03450v3
- Date: Mon, 10 Jun 2024 14:54:23 GMT
- Title: Seeking Interpretability and Explainability in Binary Activated Neural Networks
- Authors: Benjamin Leblanc, Pascal Germain,
- Abstract summary: We study the use of binary activated neural networks as interpretable and explainable predictors in the context of regression tasks.
We present an approach based on the efficient computation of SHAP values for quantifying the relative importance of the features, hidden neurons and even weights.
- Score: 2.828173677501078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the use of binary activated neural networks as interpretable and explainable predictors in the context of regression tasks on tabular data; more specifically, we provide guarantees on their expressiveness, present an approach based on the efficient computation of SHAP values for quantifying the relative importance of the features, hidden neurons and even weights. As the model's simplicity is instrumental in achieving interpretability, we propose a greedy algorithm for building compact binary activated networks. This approach doesn't need to fix an architecture for the network in advance: it is built one layer at a time, one neuron at a time, leading to predictors that aren't needlessly complex for a given task.
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
This paper proposes a theoretical and computational framework for training and robustness verification of implicit neural networks.
We introduce a related embedded network and show that the embedded network can be used to provide an $ell_infty$-norm box over-approximation of the reachable sets of the original network.
We apply our algorithms to train implicit neural networks on the MNIST dataset and compare the robustness of our models with the models trained via existing approaches in the literature.
arXiv Detail & Related papers (2022-08-08T03:13:24Z) - PAC-Bayesian Learning of Aggregated Binary Activated Neural Networks
with Probabilities over Representations [2.047424180164312]
We study the expectation of a probabilistic neural network as a predictor by itself, focusing on the aggregation of binary activated neural networks with normal distributions over real-valued weights.
We show that the exact computation remains tractable for deep but narrow neural networks, thanks to a dynamic programming approach.
arXiv Detail & Related papers (2021-10-28T14:11:07Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - A biologically plausible neural network for local supervision in
cortical microcircuits [17.00937011213428]
We derive an algorithm for training a neural network which avoids explicit error and backpropagation.
Our algorithm maps onto a neural network that bears a remarkable resemblance to the connectivity structure and learning rules of the cortex.
arXiv Detail & Related papers (2020-11-30T17:35:22Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Separation of Memory and Processing in Dual Recurrent Neural Networks [0.0]
We explore a neural network architecture that stacks a recurrent layer and a feedforward layer that is also connected to the input.
When noise is introduced into the activation function of the recurrent units, these neurons are forced into a binary activation regime that makes the networks behave much as finite automata.
arXiv Detail & Related papers (2020-05-17T11:38:42Z) - On Tractable Representations of Binary Neural Networks [23.50970665150779]
We consider the compilation of a binary neural network's decision function into tractable representations such as Ordered Binary Decision Diagrams (OBDDs) and Sentential Decision Diagrams (SDDs)
In experiments, we show that it is feasible to obtain compact representations of neural networks as SDDs.
arXiv Detail & Related papers (2020-04-05T03:21:26Z) - Exploring the Connection Between Binary and Spiking Neural Networks [1.329054857829016]
We bridge the recent algorithmic progress in training Binary Neural Networks and Spiking Neural Networks.
We show that training Spiking Neural Networks in the extreme quantization regime results in near full precision accuracies on large-scale datasets.
arXiv Detail & Related papers (2020-02-24T03:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.