QAOA Performance in Noisy Devices: The Effect of Classical Optimizers and Ansatz Depth
- URL: http://arxiv.org/abs/2307.10149v2
- Date: Thu, 11 Jul 2024 10:22:37 GMT
- Title: QAOA Performance in Noisy Devices: The Effect of Classical Optimizers and Ansatz Depth
- Authors: Aidan Pellow-Jarman, Shane McFarthing, Ilya Sinayskiy, Daniel K. Park, Anban Pillay, Francesco Petruccione,
- Abstract summary: The Quantum Approximate Optimization Algorithm (QAOA) is a variational quantum algorithm for Near-term Intermediate-Scale Quantum computers (NISQ)
This paper presents an investigation into the impact realistic noise on the classical vectors.
We find that while there is no significant difference in the performance of classicals in a state simulation, the Adam and AMSGrads perform best in the presence of shot noise.
- Score: 0.32985979395737786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Quantum Approximate Optimization Algorithm (QAOA) is a variational quantum algorithm for Near-term Intermediate-Scale Quantum computers (NISQ) providing approximate solutions for combinatorial optimiz\-ation problems. The QAOA utilizes a quantum-classical loop, consisting of a quantum ansatz and a classical optimizer, to minimize some cost function, computed on the quantum device. This paper presents an investigation into the impact of realistic noise on the classical optimizer and the determination of optimal circuit depth for the Quantum Approximate Optimization Algorithm (QAOA) in the presence of noise. We find that, while there is no significant difference in the performance of classical optimizers in a state vector simulation, the Adam and AMSGrad optimizers perform best in the presence of shot noise. Under the conditions of real noise, the SPSA optimizer, along with ADAM and AMSGrad, emerge as the top performers. The study also reveals that the quality of solutions to some 5 qubit minimum vertex cover problems increases for up to around six layers in the QAOA circuit, after which it begins to decline. This analysis shows that increasing the number of layers in the QAOA in an attempt to increase accuracy may not work well in a noisy device.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Multiscale Quantum Approximate Optimization Algorithm [0.0]
The quantum approximate optimization algorithm (QAOA) is one of the canonical algorithms designed to find approximate solutions to optimization problems.
We propose a new version of QAOA that incorporates the capabilities of QAOA and the real-space renormalization group transformation.
arXiv Detail & Related papers (2023-12-11T07:47:16Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Bayesian Optimization for QAOA [0.0]
We present a Bayesian optimization procedure to optimise a quantum circuit.
We show that our approach allows for a significant reduction in the number of calls to the quantum circuit.
Our results suggest that the method proposed here is a promising framework to leverage the hybrid nature of QAOA on the noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2022-09-08T13:59:47Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
Variational quantum algorithms (VQAs) offer a promising path towards using near-term quantum hardware for applications in academic and industrial research.
We study the performance of four commonly used gradient-free optimization methods: SLSQP, COBYLA, CMA-ES, and SPSA.
arXiv Detail & Related papers (2021-11-26T12:13:20Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - A Comparison of Various Classical Optimizers for a Variational Quantum
Linear Solver [0.0]
Variational Hybrid Quantum Classical Algorithms (VHQCAs) are a class of quantum algorithms intended to run on noisy quantum devices.
These algorithms employ a parameterized quantum circuit (ansatz) and a quantum-classical feedback loop.
A classical device is used to optimize the parameters in order to minimize a cost function that can be computed far more efficiently on a quantum device.
arXiv Detail & Related papers (2021-06-16T10:40:00Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Classical Optimizers for Noisy Intermediate-Scale Quantum Devices [1.43494686131174]
We present a collection of tunings tuned for usage on Noisy Intermediate-Scale Quantum (NISQ) devices.
We analyze the efficiency and effectiveness of different minimizes in a VQE case study.
While most results to date concentrated on tuning the quantum VQE circuit, we show that, in the presence of quantum noise, the classical minimizer step needs to be carefully chosen to obtain correct results.
arXiv Detail & Related papers (2020-04-06T21:31:22Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.