論文の概要: A multi view multi stage and multi window framework for pulmonary artery
segmentation from CT scans
- arxiv url: http://arxiv.org/abs/2209.03918v1
- Date: Thu, 8 Sep 2022 16:55:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-09 12:55:39.333869
- Title: A multi view multi stage and multi window framework for pulmonary artery
segmentation from CT scans
- Title(参考訳): CTスキャンによる肺動脈セグメンテーションのためのマルチビュー多段階およびマルチウィンドウフレームワーク
- Authors: ZeYu Liu, Yi Wang, Yong Zhang, Hao Yin, Chao Guo, Zhongyu Wang
- Abstract要約: 肺動脈のセグメンテーション問題を3次元CNNネットワークに基づく2段階法を用いて解決する。
また,セグメンテーション性能を向上させるために,マルチビューとマルチウィンドウレベルの手法を採用する。
- 参考スコア(独自算出の注目度): 11.493885592591633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This is the technical report of the 9th place in the final result of
PARSE2022 Challenge. We solve the segmentation problem of the pulmonary artery
by using a two-stage method based on a 3D CNN network. The coarse model is used
to locate the ROI, and the fine model is used to refine the segmentation
result. In addition, in order to improve the segmentation performance, we adopt
multi-view and multi-window level method, at the same time we employ a
fine-tune strategy to mitigate the impact of inconsistent labeling.
- Abstract(参考訳): これはPARSE2022 Challengeの最終結果の第9位の技術的報告である。
3d cnnネットワークを用いた2段階法を用いて肺動脈の分画問題を解決する。
粗いモデルはROIを見つけるために使われ、細かいモデルはセグメンテーション結果を洗練するために使用される。
また, セグメンテーション性能を向上させるため, マルチビュー・マルチウィンドウレベル手法を採用すると同時に, 不整合ラベリングの影響を軽減するため, 微調整戦略を採用する。
関連論文リスト
- Deep Multimodal Fusion of Data with Heterogeneous Dimensionality via
Projective Networks [4.933439602197885]
ヘテロジニアス次元(例えば3D+2D)を持つマルチモーダルデータの融合のための新しいディープラーニングベースのフレームワークを提案する。
この枠組みは、地理的萎縮(GA)の分画、加齢に伴う黄斑変性の後期発現、マルチモーダル網膜イメージングにおける網膜血管(RBV)の分画といった課題で検証された。
提案手法は, GAとRBVのセグメンテーションを最大3.10%, Diceを最大4.64%向上させる。
論文 参考訳(メタデータ) (2024-02-02T11:03:33Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Adjacent Slice Feature Guided 2.5D Network for Pulmonary Nodule
Segmentation [11.960631781470811]
パラメータや計算量が少ない2次元分割法はスライス間の空間的関係を欠いている。
本稿では, この問題を解決するために, 隣り合うスライス特徴量2.5Dネットワークを提案する。
本手法は肺結節分節作業における他の方法よりも優れている。
論文 参考訳(メタデータ) (2022-11-19T06:13:18Z) - Pulmonary Vessel Segmentation based on Orthogonal Fused U-Net++ of Chest
CT Images [1.8692254863855962]
胸部CT画像から肺血管セグメンテーションの枠組みと改善過程について検討した。
アプローチの鍵となるのは、3つの軸から2.5D区分けネットワークを応用し、堅牢で完全に自動化された肺血管区分け結果を示す。
提案手法は,他のネットワーク構造よりも大きなマージンで優れ,平均DICEスコア0.9272,精度0.9310を極端に上回っている。
論文 参考訳(メタデータ) (2021-07-03T21:46:29Z) - InverseForm: A Loss Function for Structured Boundary-Aware Segmentation [80.39674800972182]
逆変換ネットワークを用いたセマンティックセグメンテーションのための新しい境界認識損失項を提案する。
このプラグイン損失項は境界変換の捕捉におけるクロスエントロピー損失を補完する。
室内および屋外のセグメンテーションベンチマークにおける損失関数の定量的および定性的効果を解析した。
論文 参考訳(メタデータ) (2021-04-06T18:52:45Z) - Detecting micro fractures with X-ray computed tomography [4.855026133182103]
XRCTを用いたカララ大理石のフラクチャーネットワークの可視化に成功したデータ集合について述べる。
従来の3手法と機械学習に基づく2手法を評価した。
2次元U-netモデルの出力は、機械学習に基づくセグメンテーション手法の1つである。
論文 参考訳(メタデータ) (2021-03-23T20:20:24Z) - MuCAN: Multi-Correspondence Aggregation Network for Video
Super-Resolution [63.02785017714131]
ビデオ超解像(VSR)は、複数の低解像度フレームを使用して、各フレームに対して高解像度の予測を生成することを目的としている。
フレーム間およびフレーム内は、時間的および空間的情報を利用するための鍵となるソースである。
VSRのための効果的なマルチ対応アグリゲーションネットワーク(MuCAN)を構築した。
論文 参考訳(メタデータ) (2020-07-23T05:41:27Z) - Weakly-Supervised Segmentation for Disease Localization in Chest X-Ray
Images [0.0]
医用胸部X線画像のセマンティックセグメンテーションに対する新しいアプローチを提案する。
本手法は肺と胸壁の間の異常な空気量を検出するための胸部X線検査に適用可能である。
論文 参考訳(メタデータ) (2020-07-01T20:48:35Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
本稿では,前立腺領域を高速に局在させる第1段階と,前立腺領域を正確に区分する第2段階の2段階のフレームワークを提案する。
マルチタスクネットワークにおけるボクセルワイドサンプリングによる新しいオンラインメトリック学習モジュールを提案する。
本手法は,従来のクロスエントロピー学習法やDice損失学習法と比較して,より代表的なボクセルレベルの特徴を効果的に学習することができる。
論文 参考訳(メタデータ) (2020-05-15T10:37:02Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
本稿では,不対向画像分割のための新しい学習手法を提案する。
提案手法では,CTおよびMRI間での畳み込みカーネルの共有により,ネットワークパラメータを多用する。
我々は2つの多クラスセグメンテーション問題に対するアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2020-01-06T20:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。