論文の概要: SC-Square: Future Progress with Machine Learning?
- arxiv url: http://arxiv.org/abs/2209.04361v1
- Date: Fri, 9 Sep 2022 15:47:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-12 13:15:12.485640
- Title: SC-Square: Future Progress with Machine Learning?
- Title(参考訳): SC-Square: 機械学習の今後の進歩?
- Authors: Matthew England
- Abstract要約: この要約は、2021年のSC-Square Workshopでの基調講演に付随する。
SC-Squareの関心アルゴリズムを改善するために機械学習技術を用いた最近の研究について調査する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The algorithms employed by our communities are often underspecified, and thus
have multiple implementation choices, which do not effect the correctness of
the output, but do impact the efficiency or even tractability of its
production. In this extended abstract, to accompany a keynote talk at the 2021
SC-Square Workshop, we survey recent work (both the author's and from the
literature) on the use of Machine Learning technology to improve algorithms of
interest to SC-Square.
- Abstract(参考訳): コミュニティが採用するアルゴリズムは、しばしば不特定であり、複数の実装選択があるため、出力の正しさには影響しないが、生産効率やトラクタビリティにも影響を及ぼす。
この拡張要約では、2021年のSC-Square Workshopでの基調講演に付随して、SC-Squareに対する関心のアルゴリズムを改善するための機械学習技術の使用に関する最近の研究(著者と文献の両方)を調査します。
関連論文リスト
- Application-Driven Innovation in Machine Learning [56.85396167616353]
機械学習におけるアプリケーション駆動研究のパラダイムについて述べる。
このアプローチがメソッド駆動の作業と生産的に相乗効果を示す。
このようなメリットにもかかわらず、マシンラーニングにおけるレビュー、採用、教育のプラクティスが、アプリケーション主導のイノベーションを後押しすることが多いことに気付きます。
論文 参考訳(メタデータ) (2024-03-26T04:59:27Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
本研究は、要求仕様からソフトウェア弱点を特定するための効率的な機械学習アルゴリズムを見つけることに焦点を当てる。
ProMISE_exp. Naive Bayes、サポートベクターマシン(SVM)、決定木、ニューラルネットワーク、畳み込みニューラルネットワーク(CNN)アルゴリズムをテストした。
論文 参考訳(メタデータ) (2023-08-10T13:19:10Z) - A Survey From Distributed Machine Learning to Distributed Deep Learning [0.356008609689971]
データとアルゴリズムを複数のマシンに分散する分散機械学習が提案されている。
これらのアルゴリズムを分類とクラスタリング(従来の機械学習)、深層学習、深層強化学習グループに分割する。
上記のアルゴリズムの調査に基づいて、今後の研究で対処すべき限界を強調した。
論文 参考訳(メタデータ) (2023-07-11T13:06:42Z) - Provably Efficient Representation Learning with Tractable Planning in
Low-Rank POMDP [81.00800920928621]
部分的に観測可能なマルコフ決定過程(POMDP)における表現学習の研究
まず,不確実性(OFU)に直面した最大推定(MLE)と楽観性を組み合わせた復調性POMDPのアルゴリズムを提案する。
次に、このアルゴリズムをより広範な$gamma$-observable POMDPのクラスで機能させる方法を示す。
論文 参考訳(メタデータ) (2023-06-21T16:04:03Z) - Learning the Quality of Machine Permutations in Job Shop Scheduling [9.972171952370287]
機械の順列の質を予測することを目的とした新しい教師付き学習タスクを提案する。
そして、我々は、正確な逐次深層学習モデルを作成することができるような、この品質を推定する独自の方法論を設計する。
論文 参考訳(メタデータ) (2022-07-07T11:53:10Z) - Machine Learning State-of-the-Art with Uncertainties [3.4123736336071864]
本研究では,精度測定に関する信頼区間が研究成果のコミュニケーションをいかに大きく向上させるかを示すために,模範的な画像分類研究を行う。
機械学習記事のオーサリングとレビューのプロセスを改善するために提案する。
論文 参考訳(メタデータ) (2022-04-11T15:06:26Z) - Benchmarking Processor Performance by Multi-Threaded Machine Learning
Algorithms [0.0]
本稿では,マルチスレッド機械学習クラスタリングアルゴリズムの性能比較を行う。
私は、アルゴリズムのパフォーマンス特性を決定するために、線形回帰、ランダムフォレスト、K-Nearest Neighborsに取り組んでいます。
論文 参考訳(メタデータ) (2021-09-11T13:26:58Z) - Bayesian active learning for production, a systematic study and a
reusable library [85.32971950095742]
本稿では,現在のアクティブラーニング技術の主な欠点について分析する。
実世界のデータセットの最も一般的な課題が深層能動学習プロセスに与える影響について,系統的研究を行った。
部分的不確実性サンプリングやより大きいクエリサイズといった,アクティブな学習ループを高速化する2つの手法を導出する。
論文 参考訳(メタデータ) (2020-06-17T14:51:11Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
ソフトウェア開発業界は、現代のソフトウェアシステムを高度にインテリジェントで自己学習システムに移行するために、機械学習を急速に採用している。
ソフトウェアエンジニアリングライフサイクルの段階にわたって機械学習の採用について、現状を探求する包括的な研究は存在しない。
本研究は,機械学習によるソフトウェア工学(MLSE)分類を,ソフトウェア工学ライフサイクルのさまざまな段階に適用性に応じて,最先端の機械学習技術に分類するものである。
論文 参考訳(メタデータ) (2020-05-27T11:56:56Z) - Guidelines for enhancing data locality in selected machine learning
algorithms [0.0]
データ局所性を利用した機械学習アルゴリズムの性能向上手法の1つを分析する。
繰り返しのデータアクセスは、データ移動における冗長性と見なすことができる。
この研究は、結果を直接再利用することによって、これらの冗長性を避けるためのいくつかの機会を特定する。
論文 参考訳(メタデータ) (2020-01-09T14:16:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。