論文の概要: The Role Of Biology In Deep Learning
- arxiv url: http://arxiv.org/abs/2209.04425v1
- Date: Wed, 7 Sep 2022 23:22:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-12 12:17:36.709958
- Title: The Role Of Biology In Deep Learning
- Title(参考訳): 深層学習における生物学の役割
- Authors: Robert Bain
- Abstract要約: この研究は、その歴史の一部を要約し、現代の理論神経科学をディープラーニングの分野から人工ニューラルネットワークの実験に取り入れている。
特に、反復等級プルーニングは、性能を損なうことなく、33倍の重量で疎結合ネットワークを訓練するために用いられる。
これらは、重量空間だけで画像ノイズの堅牢性を改善するという仮説をテストし、最終的に否定するために使用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Artificial neural networks took a lot of inspiration from their biological
counterparts in becoming our best machine perceptual systems. This work
summarizes some of that history and incorporates modern theoretical
neuroscience into experiments with artificial neural networks from the field of
deep learning. Specifically, iterative magnitude pruning is used to train
sparsely connected networks with 33x fewer weights without loss in performance.
These are used to test and ultimately reject the hypothesis that weight
sparsity alone improves image noise robustness. Recent work mitigated
catastrophic forgetting using weight sparsity, activation sparsity, and active
dendrite modeling. This paper replicates those findings, and extends the method
to train convolutional neural networks on a more challenging continual learning
task. The code has been made publicly available.
- Abstract(参考訳): 人工ニューラルネットワークは、私たちの最高の機械知覚システムになるために、生物から多くのインスピレーションを受けました。
この研究は、その歴史の一部を要約し、現代の理論神経科学をディープラーニングの分野から人工ニューラルネットワークの実験に取り入れている。
特に、反復等級プルーニングは、性能を損なうことなく、33倍の重量で疎結合ネットワークを訓練するために用いられる。
これらは、重量空間だけで画像ノイズの堅牢性を改善するという仮説をテストし、最終的に否定するために使用される。
最近の研究は、重量疎度、活性化疎度、活性デンドライトモデリングによる破滅的忘れを緩和している。
本稿では,これらの知見を再現し,より困難な連続学習課題において畳み込みニューラルネットワークを訓練する手法を拡張した。
コードは公開されています。
関連論文リスト
- Expressivity of Neural Networks with Random Weights and Learned Biases [44.02417750529102]
最近の研究は、任意の関数がパラメータの小さな部分集合をチューニングすることによって同様に学習できることを示し、普遍近似の境界を推し進めている。
ランダムな重みを固定したフィードフォワードニューラルネットワークが、バイアスのみを学習することによって複数のタスクを実行することができることを示す理論的および数値的なエビデンスを提供する。
我々の結果は神経科学に関係しており、シナプスの重みを変えることなく動的に行動に関連のある変化が起こる可能性を実証している。
論文 参考訳(メタデータ) (2024-07-01T04:25:49Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - Activity Sparsity Complements Weight Sparsity for Efficient RNN
Inference [2.0822643340897273]
本研究では、繰り返しニューラルネットワークモデルにおいて、活動空間がパラメータ空間と乗算的に構成可能であることを示す。
私たちはPenn Treebank言語モデリングタスクで60ドル以下の難易度を維持しながら、最大20ドルまで計算の削減を実現しています。
論文 参考訳(メタデータ) (2023-11-13T08:18:44Z) - Benign Overfitting for Two-layer ReLU Convolutional Neural Networks [60.19739010031304]
ラベルフリップ雑音を持つ2層ReLU畳み込みニューラルネットワークを学習するためのアルゴリズム依存型リスクバウンダリを確立する。
緩やかな条件下では、勾配降下によってトレーニングされたニューラルネットワークは、ほぼゼロに近いトレーニング損失とベイズ最適試験リスクを達成できることを示す。
論文 参考訳(メタデータ) (2023-03-07T18:59:38Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Stochastic Neural Networks with Infinite Width are Deterministic [7.07065078444922]
使用中のニューラルネットワークの主要なタイプであるニューラルネットワークについて研究する。
最適化されたニューラルネットワークの幅が無限大になる傾向があるため、トレーニングセットの予測分散はゼロになる。
論文 参考訳(メタデータ) (2022-01-30T04:52:31Z) - Artificial Neural Variability for Deep Learning: On Overfitting, Noise
Memorization, and Catastrophic Forgetting [135.0863818867184]
人工ニューラルネットワーク(ANV)は、ニューラルネットワークが自然のニューラルネットワークからいくつかの利点を学ぶのに役立つ。
ANVは、トレーニングデータと学習モデルの間の相互情報の暗黙の正則化として機能する。
過度にフィットし、ノイズの記憶をラベル付けし、無視できるコストで破滅的な忘れを効果的に軽減することができる。
論文 参考訳(メタデータ) (2020-11-12T06:06:33Z) - Learning compositional functions via multiplicative weight updates [97.9457834009578]
乗算重み更新は構成関数に合わせた降下補題を満たすことを示す。
マダムは、学習率のチューニングなしに、最先端のニューラルネットワークアーキテクチャをトレーニングできることを示す。
論文 参考訳(メタデータ) (2020-06-25T17:05:19Z) - Feature Purification: How Adversarial Training Performs Robust Deep
Learning [66.05472746340142]
ニューラルネットワークのトレーニングプロセス中に隠れた重みに、特定の小さな密度の混合物が蓄積されることが、敵の例の存在の原因の1つであることを示す。
この原理を説明するために、CIFAR-10データセットの両実験と、ある自然な分類タスクに対して、ランダムな勾配勾配勾配を用いた2層ニューラルネットワークをトレーニングすることを証明する理論的結果を示す。
論文 参考訳(メタデータ) (2020-05-20T16:56:08Z) - Synaptic Metaplasticity in Binarized Neural Networks [4.243926243206826]
ディープニューラルネットワークは、新しいタスクをトレーニングする際に破滅的なことを忘れがちだ。
本研究では,マルチタスクとストリーム学習の状況において,これまで提示したデータを必要としない破滅的な忘れを軽減させる訓練手法を提案する。
この研究は計算神経科学とディープラーニングを橋渡しし、将来の組み込みおよびニューロモルフィックシステムのための重要な資産を提示する。
論文 参考訳(メタデータ) (2020-03-07T08:09:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。