Logic-Based Explainability in Machine Learning
- URL: http://arxiv.org/abs/2211.00541v1
- Date: Mon, 24 Oct 2022 13:43:07 GMT
- Title: Logic-Based Explainability in Machine Learning
- Authors: Joao Marques-Silva
- Abstract summary: The operation of the most successful Machine Learning models is incomprehensible for human decision makers.
In recent years, there have been efforts on devising approaches for explaining ML models.
This paper overviews the ongoing research efforts on computing rigorous model-based explanations of ML models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The last decade witnessed an ever-increasing stream of successes in Machine
Learning (ML). These successes offer clear evidence that ML is bound to become
pervasive in a wide range of practical uses, including many that directly
affect humans. Unfortunately, the operation of the most successful ML models is
incomprehensible for human decision makers. As a result, the use of ML models,
especially in high-risk and safety-critical settings is not without concern. In
recent years, there have been efforts on devising approaches for explaining ML
models. Most of these efforts have focused on so-called model-agnostic
approaches. However, all model-agnostic and related approaches offer no
guarantees of rigor, hence being referred to as non-formal. For example, such
non-formal explanations can be consistent with different predictions, which
renders them useless in practice. This paper overviews the ongoing research
efforts on computing rigorous model-based explanations of ML models; these
being referred to as formal explanations. These efforts encompass a variety of
topics, that include the actual definitions of explanations, the
characterization of the complexity of computing explanations, the currently
best logical encodings for reasoning about different ML models, and also how to
make explanations interpretable for human decision makers, among others.
Related papers
- Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Distance-Restricted Explanations: Theoretical Underpinnings & Efficient Implementation [19.22391463965126]
Some uses of machine learning (ML) involve high-stakes and safety-critical applications.
This paper investigates novel algorithms for scaling up the performance of logic-based explainers.
arXiv Detail & Related papers (2024-05-14T03:42:33Z) - Pyreal: A Framework for Interpretable ML Explanations [51.14710806705126]
Pyreal is a system for generating a variety of interpretable machine learning explanations.
Pyreal converts data and explanations between the feature spaces expected by the model, relevant explanation algorithms, and human users.
Our studies demonstrate that Pyreal generates more useful explanations than existing systems.
arXiv Detail & Related papers (2023-12-20T15:04:52Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - Learning by Design: Structuring and Documenting the Human Choices in
Machine Learning Development [6.903929927172917]
We present a method consisting of eight design questions that outline the deliberation and normative choices going into creating a machine learning model.
Our method affords several benefits, such as supporting critical assessment through methodological transparency.
We believe that our method can help ML practitioners structure and justify their choices and assumptions when developing ML models.
arXiv Detail & Related papers (2021-05-03T08:47:45Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Survey of explainable machine learning with visual and granular methods
beyond quasi-explanations [0.0]
We focus on moving from quasi-explanations that dominate in ML to domain-specific explanation supported by granular visuals.
The paper includes results on theoretical limits to preserve n-D distances in lower dimensions, based on the Johnson-Lindenstrauss lemma.
arXiv Detail & Related papers (2020-09-21T23:39:06Z) - An Information-Theoretic Approach to Personalized Explainable Machine
Learning [92.53970625312665]
We propose a simple probabilistic model for the predictions and user knowledge.
We quantify the effect of an explanation by the conditional mutual information between the explanation and prediction.
arXiv Detail & Related papers (2020-03-01T13:06:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.