論文の概要: Reproducibility in machine learning for medical imaging
- arxiv url: http://arxiv.org/abs/2209.05097v1
- Date: Mon, 12 Sep 2022 09:00:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-13 12:13:08.691276
- Title: Reproducibility in machine learning for medical imaging
- Title(参考訳): 医療画像における機械学習の再現性
- Authors: Olivier Colliot, Elina Thibeau-Sutre, Ninon Burgos
- Abstract要約: 本章は、医療画像の機械学習分野の研究者への紹介である。
それぞれの目的は、それを定義すること、それを達成するための要件を説明すること、有用性について議論することである。
この章は、教義の利点に関する議論と、この概念と研究実践におけるその実践に対する非教義的なアプローチへの嘆願で終わる。
- 参考スコア(独自算出の注目度): 3.1390096961027076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reproducibility is a cornerstone of science, as the replication of findings
is the process through which they become knowledge. It is widely considered
that many fields of science are undergoing a reproducibility crisis. This has
led to the publications of various guidelines in order to improve research
reproducibility.
This didactic chapter intends at being an introduction to reproducibility for
researchers in the field of machine learning for medical imaging. We first
distinguish between different types of reproducibility. For each of them, we
aim at defining it, at describing the requirements to achieve it and at
discussing its utility. The chapter ends with a discussion on the benefits of
reproducibility and with a plea for a non-dogmatic approach to this concept and
its implementation in research practice.
- Abstract(参考訳): 再現性は科学の基盤であり、発見の複製はそれらが知識となる過程である。
多くの科学分野が再現性危機にさらされていると考えられている。
これにより、研究再現性を改善するために様々なガイドラインが出版された。
この実践的な章は、医療画像の機械学習分野の研究者への再現性の導入を目的としている。
まず、異なる種類の再現性を区別する。
それぞれの目的は、それを定義すること、それを達成するための要件を説明すること、有用性について議論することである。
この章は再現性の利点に関する議論と、この概念と研究実践におけるその実践に対する非教義的なアプローチへの嘆願で終わる。
関連論文リスト
- Predicting Parkinson's disease trajectory using clinical and functional MRI features: a reproduction and replication study [1.621204680136386]
パーキンソン病(英: Parkinson's disease、PD)は、神経変性疾患の1つで、病態はよく分かっていない。
最近、いくつかの神経イメージングバイオマーカーが研究されているが、これらはいくつかの可変性の原因に影響を受けやすい。
この研究は、PDの潜在的な神経イメージングバイオマーカーの複製可能性を研究する大規模なプロジェクトの一部である。
論文 参考訳(メタデータ) (2024-02-20T13:42:50Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
バイオプルーシブル・クレジット・アサインメントは、事実上あらゆる学習条件と互換性があり、エネルギー効率が高い。
本稿では,人工ニューラルネットワークにおける信用代入の生体評価可能なルールをモデル化する,いくつかの重要なアルゴリズムについて検討する。
我々は,このようなアルゴリズムを実用アプリケーションでより有用にするためには,今後の課題に対処する必要があることを論じる。
論文 参考訳(メタデータ) (2024-02-16T18:05:09Z) - Reproducibility, Replicability, and Repeatability: A survey of reproducible research with a focus on high performance computing [0.0]
再現性は科学研究の基本的な原理である。
高性能コンピューティングには固有の課題がある。
本稿では、これらの懸念と潜在的な解決策を包括的にレビューする。
論文 参考訳(メタデータ) (2024-02-12T09:59:11Z) - Reproducibility of Machine Learning: Terminology, Recommendations and
Open Issues [5.30596984761294]
危機が最近科学者によって認識され、これはさらに人工知能と機械学習に影響を及ぼしているようだ。
私たちは、このトピックに関する現在の文献を批判的にレビューし、オープンな問題を強調します。
現代の機械学習でよく見過ごされる重要な要素を特定し、それらの新しい推奨事項を提供します。
論文 参考訳(メタデータ) (2023-02-24T15:33:20Z) - Building a Culture of Reproducibility in Academic Research [55.22219308265945]
再現性(reproducibility)は、研究者が「抽象的な」議論をしない理想であるが、願望が学界の冷酷な現実と出会うと、しばしば「消える」という理想である。
このエッセイでは、他の優先順位に対する要求のバランスをとりながら、運用方法に不満を抱く個人的な経験を共有します。
論文 参考訳(メタデータ) (2022-12-27T16:03:50Z) - Few-Shot Meta Learning for Recognizing Facial Phenotypes of Genetic
Disorders [55.41644538483948]
分類の自動化と類似性検索は、医師が可能な限り早期に遺伝状態の診断を行うための意思決定を支援する。
従来の研究は分類問題としてこの問題に対処し、深層学習法を用いてきた。
本研究では,健常人の大規模なコーパスで訓練した顔認識モデルを用いて,顔の表情認識に移行した。
論文 参考訳(メタデータ) (2022-10-23T11:52:57Z) - Improving Radiology Summarization with Radiograph and Anatomy Prompts [60.30659124918211]
本稿では,印象生成を促進するために,新しい解剖学的拡張型マルチモーダルモデルを提案する。
より詳しくは、まず、解剖学を抽出する一連のルールを構築し、各文にこれらのプロンプトを配置し、解剖学的特徴を強調する。
コントラスト学習モジュールを用いて、これらの2つの表現を全体レベルで整列させ、コアテンションを用いて文レベルで融合させる。
論文 参考訳(メタデータ) (2022-10-15T14:05:03Z) - Variational Topic Inference for Chest X-Ray Report Generation [102.04931207504173]
医療画像のレポート生成は、作業負荷を減らし、臨床実習における診断を支援することを約束する。
近年の研究では、ディープラーニングモデルが自然画像のキャプションに成功していることが示された。
本稿では,自動レポート生成のための変分トピック推論を提案する。
論文 参考訳(メタデータ) (2021-07-15T13:34:38Z) - Machine Learning Applications for Therapeutic Tasks with Genomics Data [49.98249191161107]
ゲノム学の機械学習応用に関する文献を、治療開発のレンズでレビューします。
治療パイプライン全体にわたるゲノミクス応用における22の機械学習を同定する。
この分野における7つの重要な課題を、拡大と影響の機会として挙げる。
論文 参考訳(メタデータ) (2021-05-03T21:20:20Z) - Research Reproducibility as a Survival Analysis [22.66983713481359]
我々は,論文のモデリングを生存分析問題として検討する。
生存率分析によって、過去の縦断データをよりよく説明できる新たな洞察を導きだす方法を示す。
論文 参考訳(メタデータ) (2020-12-17T20:56:53Z) - The Fundamental Principles of Reproducibility [2.4671396651514983]
私は科学的手法に根ざした基礎的な見解を採っている。
科学的手法は、定義に必要な用語を開発するために分析され、特徴付けられる。
論文 参考訳(メタデータ) (2020-11-19T20:37:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。