論文の概要: LLM-Augmented Graph Neural Recommenders: Integrating User Reviews
- arxiv url: http://arxiv.org/abs/2504.02195v1
- Date: Thu, 03 Apr 2025 00:40:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 19:35:57.106074
- Title: LLM-Augmented Graph Neural Recommenders: Integrating User Reviews
- Title(参考訳): LLM-Augmented Graph Neural Recommenders: ユーザレビューの統合
- Authors: Hiroki Kanezashi, Toyotaro Suzumura, Cade Reid, Md Mostafizur Rahman, Yu Hirate,
- Abstract要約: 本稿では,グラフニューラルネットワーク(GNN)ベースのモデルと大規模言語モデル(LLM)を用いて,レビューアウェアな表現を生成するフレームワークを提案する。
提案手法は,ユーザの行動信号と言語信号の両方が効果的に捕捉されるように,テキストから得られる特徴に対するユーザとテムの相互作用のバランスをとる。
- 参考スコア(独自算出の注目度): 2.087411180679868
- License:
- Abstract: Recommender systems increasingly aim to combine signals from both user reviews and purchase (or other interaction) behaviors. While user-written comments provide explicit insights about preferences, merging these textual representations from large language models (LLMs) with graph-based embeddings of user actions remains a challenging task. In this work, we propose a framework that employs both a Graph Neural Network (GNN)-based model and an LLM to produce review-aware representations, preserving review semantics while mitigating textual noise. Our approach utilizes a hybrid objective that balances user-item interactions against text-derived features, ensuring that user's both behavioral and linguistic signals are effectively captured. We evaluate this method on multiple datasets from diverse application domains, demonstrating consistent improvements over a baseline GNN-based recommender model. Notably, our model achieves significant gains in recommendation accuracy when review data is sparse or unevenly distributed. These findings highlight the importance of integrating LLM-driven textual feedback with GNN-derived user behavioral patterns to develop robust, context-aware recommender systems.
- Abstract(参考訳): レコメンダシステムは,ユーザレビューと購入(あるいは他のインタラクション)行動の両方からのシグナルを組み合わせることを目的としている。
ユーザによるコメントは、好みに関する明確な洞察を提供するが、大きな言語モデル(LLM)からのこれらのテキスト表現と、グラフベースのユーザアクションの埋め込みを組み合わせることは、依然として難しい課題である。
本研究では,グラフニューラルネットワーク(GNN)に基づくモデルとLLMを用いて,テキストノイズを緩和しながらレビューセマンティクスを保存し,レビュー認識表現を生成するフレームワークを提案する。
提案手法では,ユーザの行動信号と言語信号の両方が効果的に捕捉されるように,テキストから得られる特徴とユーザ同士の相互作用のバランスをとるハイブリッドな目的を生かしている。
本手法は,多様なアプリケーションドメインからの複数のデータセットに対して評価し,ベースラインのGNNベースのレコメンデータモデルに対して一貫した改善を示す。
特に,レビューデータの分散度が低い場合や不均一な場合,推薦精度が大幅に向上する。
これらの知見は,LLMによるテキストフィードバックとGNNからのユーザ行動パターンを統合して,堅牢でコンテキスト対応のレコメンデーションシステムを構築することの重要性を強調した。
関連論文リスト
- RecLM: Recommendation Instruction Tuning [17.780484832381994]
本稿では,大規模言語モデルと協調フィルタリングをシームレスに統合するモデル非依存の指導訓練パラダイムを提案する。
提案した$underlineRec$ommendationは、慎重に設計された強化学習報酬関数により、ユーザの好みの多様性を捕捉する。
論文 参考訳(メタデータ) (2024-12-26T17:51:54Z) - Enhancing Collaborative Semantics of Language Model-Driven Recommendations via Graph-Aware Learning [10.907949155931474]
大規模言語モデル(LLM)は、レコメンデーションシステムドメインにおいてますます顕著になっている。
Gal-Recは、グラフニューラルネットワーク(GNN)の意図を模倣することで、ユーザとイテムの協調的意味論の理解を強化する
Gal-Recはコラボレーティブセマンティクスの理解を大幅に強化し、レコメンデーションパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-06-19T05:50:15Z) - RecExplainer: Aligning Large Language Models for Explaining Recommendation Models [50.74181089742969]
大規模言語モデル (LLM) は、理解、推論、指導において顕著な知性を示した。
本稿では, ブラックボックスレコメンデータモデルを説明するために, LLM を代理モデルとして利用することについて検討する。
効果的なアライメントを容易にするために,行動アライメント,意図アライメント,ハイブリッドアライメントという3つの手法を導入する。
論文 参考訳(メタデータ) (2023-11-18T03:05:43Z) - Representation Learning with Large Language Models for Recommendation [33.040389989173825]
本稿では,大規模言語モデル (LLM) を用いた表現学習によるレコメンデータの強化を目的とした,モデルに依存しないフレームワーク RLMRec を提案する。
RLMRecには補助的なテキスト信号が組み込まれており、LLMが権限を持つユーザ/イテムプロファイリングパラダイムを開発し、LLMの意味空間と協調的関係信号の表現空間を整合させる。
論文 参考訳(メタデータ) (2023-10-24T15:51:13Z) - Graph Neural Bandits [49.85090929163639]
グラフニューラルネットワーク(GNN)によって強化されたユーザ間の協調性を生かしたグラフニューラルバンド(GNB)というフレームワークを提案する。
提案手法を改良するために,推定ユーザグラフ上の別々のGNNモデルを用いて,エクスプロイトと適応探索を行う。
論文 参考訳(メタデータ) (2023-08-21T15:57:57Z) - Unlocking the Potential of User Feedback: Leveraging Large Language
Model as User Simulator to Enhance Dialogue System [65.93577256431125]
本稿では,ユーザガイド応答最適化 (UGRO) という代替手法を提案し,タスク指向の対話モデルと組み合わせる。
このアプローチでは、アノテーションのないユーザシミュレータとしてLLMを使用して対話応答を評価し、より小型のエンドツーエンドTODモデルと組み合わせる。
提案手法は従来のSOTA(State-of-the-art)よりも優れている。
論文 参考訳(メタデータ) (2023-06-16T13:04:56Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
本研究では,グローバルな視点から複雑な関連性を持つ項目表現を強化するために,グラフコントラスト学習を提案する。
本稿では,CapsNetモジュールを拡張したターゲットアテンション機構により,ユーザの動的嗜好を導出する。
提案したGUESRは,大幅な改善を達成できただけでなく,汎用的な拡張戦略ともみなすことができた。
論文 参考訳(メタデータ) (2023-03-01T05:46:36Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
我々は,階層型ベイズモデルであるオーディナルグラフファクター解析(OGFA)を開発し,ユーザ・イテムとユーザ・ユーザインタラクションを共同でモデル化する。
OGFAは、優れたレコメンデーションパフォーマンスを達成するだけでなく、代表ユーザの好みに応じた解釈可能な潜在因子も抽出する。
我々はOGFAを,マルチ確率層深層確率モデルであるオーディナルグラフガンマ信念ネットワークに拡張する。
論文 参考訳(メタデータ) (2022-09-12T09:19:22Z) - Self-Supervised Hypergraph Transformer for Recommender Systems [25.07482350586435]
自己監督型ハイパーグラフ変換器(SHT)
自己監督型ハイパーグラフ変換器(SHT)
ユーザ-テム相互作用グラフ上のデータ拡張のために,クロスビュー生成型自己教師型学習コンポーネントを提案する。
論文 参考訳(メタデータ) (2022-07-28T18:40:30Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
知識グラフ(KG)は、推薦システムにおいてますます重要な役割を果たす。
既存のGNNベースのモデルは、きめ細かいインテントレベルでのユーザ項目関係の特定に失敗します。
本稿では,新しいモデルである知識グラフベースインテントネットワーク(kgin)を提案する。
論文 参考訳(メタデータ) (2021-02-14T03:21:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。