論文の概要: Detecting Network-based Internet Censorship via Latent Feature
Representation Learning
- arxiv url: http://arxiv.org/abs/2209.05152v1
- Date: Mon, 12 Sep 2022 11:16:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-13 14:23:19.920510
- Title: Detecting Network-based Internet Censorship via Latent Feature
Representation Learning
- Title(参考訳): 潜在特徴表現学習によるネットワーク型インターネット検閲の検出
- Authors: Shawn P. Duncan and Hui Chen
- Abstract要約: 我々は、潜在特徴表現学習に基づく分類モデルと、ネットワークベースのインターネット検閲を検出する画像に基づく分類モデルの設計と評価を行う。
遅延特徴表現をネットワーク到達性データから推定するために,シーケンス・ツー・シーケンス・オートエンコーダを提案する。
推定潜在特徴から検閲イベントの確率を推定するために、密結合型多層ニューラルネットワークモデルを用いる。
- 参考スコア(独自算出の注目度): 4.862220550600935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Internet censorship is a phenomenon of societal importance and attracts
investigation from multiple disciplines. Several research groups, such as
Censored Planet, have deployed large scale Internet measurement platforms to
collect network reachability data. However, existing studies generally rely on
manually designed rules (i.e., using censorship fingerprints) to detect
network-based Internet censorship from the data. While this rule-based approach
yields a high true positive detection rate, it suffers from several challenges:
it requires human expertise, is laborious, and cannot detect any censorship not
captured by the rules. Seeking to overcome these challenges, we design and
evaluate a classification model based on latent feature representation learning
and an image-based classification model to detect network-based Internet
censorship.
To infer latent feature representations from network reachability data, we
propose a sequence-to-sequence autoencoder to capture the structure and the
order of data elements in the data. To estimate the probability of censorship
events from the inferred latent features, we rely on a densely connected
multi-layer neural network model.
Our image-based classification model encodes a network reachability data
record as a gray-scale image and classifies the image as censored or not using
a dense convolutional neural network. We compare and evaluate both approaches
using data sets from Censored Planet via a hold-out evaluation. Both
classification models are capable of detecting network-based Internet
censorship as we were able to identify instances of censorship not detected by
the known fingerprints. Latent feature representations likely encode more
nuances in the data since the latent feature learning approach discovers a
greater quantity, and a more diverse set, of new censorship instances.
- Abstract(参考訳): インターネット検閲は社会的重要性の現象であり、複数の分野から調査を引き寄せている。
Censored Planetなどいくつかの研究グループが、大規模なインターネット計測プラットフォームを運用して、ネットワークの到達可能性データを収集している。
しかし、既存の研究は通常、データからネットワークベースのインターネット検閲を検出するために手動で設計された規則(検閲指紋を使用する)に依存している。
このルールに基づくアプローチは、真の正の検知率が高いが、それはいくつかの課題に悩まされている。
これらの課題を克服するために、潜在特徴表現学習に基づく分類モデルと、ネットワークベースのインターネット検閲を検出する画像に基づく分類モデルの設計と評価を行う。
ネットワーク到達性データから潜在特徴表現を推定するために,データ中のデータ要素の構造と順序をキャプチャするシーケンシャル・ツー・シーケンス・オートエンコーダを提案する。
推定潜在特徴から検閲イベントの確率を推定するために、密結合型多層ニューラルネットワークモデルを用いる。
画像ベース分類モデルは、ネットワーク到達性データレコードをグレースケール画像として符号化し、高密度畳み込みニューラルネットワークを用いて画像が検閲されているか否かを分類する。
我々は,Censored Planetのデータセットを用いて,両アプローチを比較し,評価する。
どちらの分類モデルも、既知の指紋で検出されない検閲の事例を識別できるため、ネットワークベースのインターネット検閲を検出することができる。
潜在特徴表現は、潜在特徴学習アプローチが新しい検閲インスタンスの量とより多様なセットを発見して以来、データ内のニュアンスを符号化する可能性が高い。
関連論文リスト
- Exploring Geometry of Blind Spots in Vision Models [56.47644447201878]
CNNやトランスフォーマーのような視覚モデルにおける過敏性の現象について検討する。
本稿では,入力空間に対する信頼度の高い領域を反復的に探索するレベルセットトラバースアルゴリズムを提案する。
モデルが高い信頼度を維持するこれらの連結高次元領域の範囲を推定する。
論文 参考訳(メタデータ) (2023-10-30T18:00:33Z) - Augmenting Rule-based DNS Censorship Detection at Scale with Machine
Learning [38.00013408742201]
ドメイン名システム(DNS)の検閲は、異なる国で使用される重要なメカニズムである。
本稿では,機械学習(ML)モデルが検出プロセスの合理化にどのように役立つかを検討する。
検閲されていないインスタンスのみに基づいてトレーニングされた教師なしモデルは、既存のプローブが見逃した新しいインスタンスと検閲のバリエーションを特定することができる。
論文 参考訳(メタデータ) (2023-02-03T23:36:30Z) - Unfolding Local Growth Rate Estimates for (Almost) Perfect Adversarial
Detection [22.99930028876662]
畳み込みニューラルネットワーク(CNN)は、多くの知覚的タスクにおける最先端のソリューションを定義する。
現在のCNNアプローチは、システムを騙すために特別に作られた入力の敵の摂動に対して脆弱なままである。
本稿では,ネットワークの局所固有次元(LID)と敵攻撃の関係について,最近の知見を生かした,シンプルで軽量な検出器を提案する。
論文 参考訳(メタデータ) (2022-12-13T17:51:32Z) - Community detection in censored hypergraph [8.790193989856403]
情報理論の観点から,検閲付き$m$-uniformハイパーグラフのコミュニティ検出について検討した。
本稿では,コミュニティ構造をしきい値まで正確に復元するスペクトル時間アルゴリズムを提案する。
また、1つのスペクトルアルゴリズムがしきい値を洗練しないかどうかの研究も興味深い。
論文 参考訳(メタデータ) (2021-11-04T22:03:20Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
コミュニティは、ネットワーク内の他のコミュニティと異なるメンバーの特徴と接続を明らかにする。
この調査は、最先端の手法の様々なカテゴリをカバーする新しい分類法を考案し、提案する。
ディープニューラルネットワーク(Deep Neural Network)は、畳み込みネットワーク(convolutional network)、グラフアテンションネットワーク( graph attention network)、生成的敵ネットワーク(generative adversarial network)、オートエンコーダ(autoencoder)に分けられる。
論文 参考訳(メタデータ) (2021-05-26T14:37:07Z) - NF-GNN: Network Flow Graph Neural Networks for Malware Detection and
Classification [11.624780336645006]
悪意あるソフトウェア(マルウェア)は、通信システムのセキュリティに対する脅威を増大させる。
監視および監視されていない設定でマルウェアの検出と分類をサポートする3つのベースモデルを紹介します。
4つの異なる予測タスクに関する実験は、一貫してこのアプローチの利点を実証し、グラフニューラルネットワークモデルが検出性能を大幅に向上させることができることを示した。
論文 参考訳(メタデータ) (2021-03-05T20:54:38Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
画像スプライシング偽造検出は、画像指紋によって改ざんされた領域と非改ざんされた領域を区別するグローバルバイナリ分類タスクである。
画像スプライシングフォージェリ検出のためのデュアルエンコーダU-Net(D-Unet)という,固定されていないエンコーダと固定エンコーダを用いた新しいネットワークを提案する。
D-Unetと最先端技術の比較実験において、D-Unetは画像レベルおよび画素レベルの検出において他の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-03T10:54:02Z) - Adversarial Attack on Community Detection by Hiding Individuals [68.76889102470203]
我々はブラックボックス攻撃に焦点をあて、ディープグラフコミュニティ検出モデルの検出からターゲット個人を隠すことを目的としている。
本稿では,制約付きグラフ生成器として動作するモジュールと,サロゲート型コミュニティ検出モデルとして動作するモジュールを交互に更新する反復学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-01-22T09:50:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。